Tributary-specific Snake River Adult Steelhead Escapement Estimation using instream PIT arrays

Presented to the Lower Snake River Compensation Plan Steelhead Review - June 20-21, 2012

Jason Vogel, Jody White, Rick Orme, Jim Harbeck, Brice Semmens, Chris Beasley

Collaboration

Redd Count Expansions

Weirs (Floating/Pickett)

Weirs have Limitations

PIT Arrays Have Limitations

Why Instream PIT Arrays?

- Adult Steelhead difficult to sample using weirs
 - Migration/Spawning occurs during high water
 - PIT Arrays allow for detection of adults in most conditions
- Can be used in Big Rivers, allowing for Tributary/DPS estimates
- Fish Accessible at Lower Granite Dam (Weir)
 - Fish only handled fish
 - age/sex/genetics

Utilizing PIT Tags – Across Different Spatial Scales

- Population Tributary
- Major Population Group
- -DPS Largest Scale

Answering Questions Across Different Spatial Scales

- Region-wide monitoring program to assess:
 - Key Questions addressed
 - Status Monitoring
 - Adult abundance
 - Juvenile abundance
 - Population productivity
 - Freshwater productivity

Program Goal

 Estimate adult steelhead returns to Snake River tributaries above Lower Granite Dam (LGD) by age and sex

Snake River Basin Adult Monitoring History (Instream PIT Arrays)

- 2008 LSRCP Funded first Array in South Fork Salmon 2009 – ISEMP developed methods to estimate adult escapement in S. F. Salmon and Lemhi rivers, Idaho using PIT detection sites
 - Tag at Lower Granite Dam
 - Recover Tag at Instream PIT Sites (10 sites)
 - Method was verified("proof of concept")
- 2010 Columbia Basin Coordinated Anadromous Workgroup recommended:
 - Collect <u>high</u> precision (<15% C.V.) adult escapement estimates for at least <u>one population</u> per MPG
 - Of which PIT Tags were recommended for evaluation ("Fast-Track" process, BPA)
- 2012 32 Instream PIT arrays

Regional Strategy (Andromous Salmonid Monitoring Strategy)

- 1) High precision status and trend data in at least one population per life history type per MPG.
 - CVs of 5% or less.
 - Big Creek
 - South Fork Salmon River
 - Lemhi River
 - Secesh River
 - Imnaha River
 - Lolo Creek
 - South Fork Clearwater
 - Joseph Creek
 - 2) Validate GSI results with radio and/or PIT tag arrays where we can
 - Compare with Campbell's Results Forthcoming

Methods

LGD sampling

Population

- Consistent sample rate

PIT tags

Ratio (Expansion Factor)

PIT Detection Site = "Recapture"

Upper Imnaha River

Precision

Starting Population Estimate, (complex)

Sample rate and adjustment, SbyC fish, night passage, August & December passages, fall back and re-ascension --- adapt fall Chinook run reconstruction methodology

Estimated Number of PIT Tags

Variables

Escapement

Percent Tagged

Efficiency

Conversion

Model

4 levels

4 levels

5 – 99%

5 – 99%

Response Variable

CV

= SE / Mean

RESULTS Steelhead Tag Rates @ Lower Granite Dam - 2009-2011

Run Year	Escapement	Tagging Rate	95% CI	No. PIT Tagged
2009-2010	45,889	8.7%	8.4% - 8.9%	3,773
2010-2011	48,639	9.9%	9.7% - 10.2%	4,638

2010 -2011 Steelhead

Array	Estimated Tags	Array Efficiency	PIT Escapement Estimate	
Joseph Ck. (JOC)	161 (<u>+</u> 1)	0.99 (<u>+</u> 0.00)	1,627 (<u>+</u> 45)	
Cow Ck. (COC)	15 (<u>+</u> 0)	0.93 (<u>+</u> 0.00)	147 (<u>+</u> 4)	
Lower Imnaha (IR1)	326 (<u>+</u> 3)	0.93 (<u>+</u> 0.01)	3,298 (<u>+</u> 97)	
Lower Imnaha (IR2)	307 (<u>+</u> 3)	0.97 (<u>+</u> 0.01)	3,108 (<u>+</u> 97)	
Upper Imnaha (IR3)	133 (<u>+</u> 11)	0.81 (<u>+</u> 0.07)	1,328 (<u>+</u> 45)	
Big Sheep Ck. (BSC)	76 (<u>+</u> 2)	0.92 (<u>+</u> 0.02)	765 (<u>+</u> 33)	
South Fk Salmon (SFG)	290 (<u>+</u> 5)	0.84 (<u>+</u> 0.02)	2,937 (<u>+</u> 93)	
Upper S. Fk Salmon (KRS)	149	-	1490*	
East Fk S. Fk Salmon (ESS)	66 (<u>+</u> 1)	0.92 (<u>+</u> 0.01)	667 (<u>+</u> 23)	
Secesh R. (ZEN)	39 (<u>+</u> 1)	0.97 (<u>+</u> 0.03)	397 (<u>+</u> 24)	
Big Creek (TAY)	68 (<u>+</u> 11)	0.71 (<u>+</u> 0.12)	687 (<u>+</u> 22)	
Valley Ck (VC)	23 (<u>+</u> 0)	0.91 (<u>+</u> 0.00)	232 (<u>+</u> 7)	
Lemhi R (LLR)	42 (<u>+</u> 11)	0.71 (<u>+</u> 0.21)	428 (<u>+</u> 14)	

^{*} Minimum Estimate – efficiency not calculated

How well Does it Work? Steelhead 2010-2011 Run Year

Weir/Array	Weir Estimate	PIT Tag Estimate
Asotin Creek	1,128 (1,095 – 1,182)	890 (720 – 1070)
Joseph Creek	1,698 (<u>+</u> 744)	1663 (1448 – 1917)
Lake Creek*	203 (<u>+</u> 42)	198 fish
Horse Creek	239 (188-290)H	171 fish

Weir	Fish Handled	ISEMP Tags Observed	Observed Tag Proportion
Horse Creek	141	10	0.071
Lostine River	240	18	0.075
Rapid River	133	9	0.068
Joseph Creek	304	29	0.095

Run Reconstruction of Natural Steelhead above Lower Granite Dam

- Joseph Creek
- **■** Imnaha River
- SF Salmon
- Secesh River
- **■** Big Creek
- Valley Creek
- **Lemhi River**
- **■** Asotin Creek
- **■** Potlatch River
- **■** Lapwai
- Unassigned

Wild Adult Steelhead Sex Ratio (similar to juveniles)

Basin	2011 Male	2011 Female	2010 Male	2010 Female
Middle Fk. Salmon	31%	69%	33%	67%
Grande Ronde R.	33%	67%	35%	65%
Imnaha R.	41%	59%	40%	60%
South Fork Salmon	25%	75%	24%	76%
Lemhi River	39%	61%	39%	61%
Valley Creek*	62%	38%	59%	41%

^{*}Probably very large hatchery influence

Summary

- PIT Arrays gives precise natural adult steelhead abundance estimates
 - PIT Arrays allow for detection of adults in most conditions
 - Array efficiencies very high (>90% in most cases)
- Can be used in Big Rivers, allowing for Tributary/DPS estimates
- Used in combination with other methods can fill in large data gaps for steelhead

Future

- 4 PIT arrays to be installed in 2012
- Can use arrays to estimate hatchery abundance and straying
- Comparisons with GSI for validation
- Invaluable tool for the run reconstruction efforts of natural and hatchery fish above Lower Granite
- Juvenile detection benefits (forthcoming)

Acknowledgments

BPA and LSRCP provided funding

Rick Orme, Chris Beasley, Jody White, Bill Young

3D9.1BF2328B20 3D9.QBF1641BB4 3D9.1UF1955DD2 3D9.1BE1970B60 3D9.1BFS971444 3D9.1BF1TE288A 3D9.1BF1AI1964 3D9.1BF2320D0D 3D9.1BF2330NF0 3D9.1BF236AFS8 3D9.1BF23884D? 3D9.1BF23A0EB4