Prevalence of Bacterial Kidney Disease in Natural vs. Hatchery-Reared Adult Chinook Salmon Spawned in a Hatchery and in Nature

Timothy L. Hoffnagle, Sally Gee, Glenda O'Connor, and Richard W. Carmichael

Oregon Department of Fish and Wildlife

Bacterial Kidney Disease

- Caused by Renibacterium salmoninarum
 - Slow growing bacterium
 - Causes chronic, systemic infection
 - Transmitted both horizontally and vertically
- Can be a major health problem in hatcheries, particularly captive broodstock programs
- Antibiotics are used to prevent and treat BKD outbreaks
- ELISA is the standard diagnostic method and is commonly used to cull fish to reduce vertical transmission
- Concern that hatchery salmon may spread disease to natural salmon

Objectives

Examine Chinook salmon for bacterial kidney disease and compare results among:

• Origins

• Hatchery vs. Natural

Spawning locations

• Hatchery vs. Streams

Hatchery Programs

 Captive vs. Conventional Broodstock

Management

• Wilderness vs. Supplemented streams

Populations

- Catherine Creek
- Grande Ronde River
- Imnaha River
- Lookingglass Creek
- Lostine River
- Minam River
- Wenaha River

Objectives

Look for trends that may indicate a change in BKD prevalence:

Populations

- Catherine Creek
- Grande Ronde River
- Imnaha River
- Lookingglass Creek
- Lostine River
- Minam River hatchery strays
- Wenaha River hatchery strays

Northeast Oregon Streams

Methods

Hatchery Sampling

- Samples collected from freshly killed salmon immediately after being spawned.
- Samples kept cool until being frozen at the end of the day.

Methods

Spawning Ground Survey Sampling

- Samples collected from intact carcasses.
- Samples stored in backpack until end of survey, kept on ice for transport until frozen.

Methods

Enzyme-linked Immunosorbent Assay (ELISA)

- Measures amount of *R. salmoninarum* antigen in the sample.
- Indicates present or past infection by *R.* salmoninarum.

Can Samples Collected on Spawning Ground Surveys be Analyzed?

O'Connor, G. and T. L. Hoffnagle. 2007. Use of ELISA to monitor bacterial kidney disease in naturally spawning Chinook salmon. Diseases Of Aquatic Organisms 77:137-142.

Hatchery vs. Natural Adults

Mean ELISA OD, 2004-2008

Mean ELISA OD Comparisons

ELISA OD Categories

Grande Ronde River

Lookingglass Creek

Lostine River

Minam River

Wenaha River

Imnaha River

Conclusions

- BKD is not prevalent in northeast Oregon Chinook salmon
- ELISA can be run on kidneys collected from intact carcasses on spawning ground surveys
- Naturally spawning salmon had higher ELISA OD levels than those spawned in the hatchery
 - However, comparisons between hatchery and SGS samples are confounded by the use of antibiotics in the hatchery
- No difference in ELISA ODs between hatchery vs. natural salmon
- Supplemented streams may have less BKD than wilderness streams.
- No trends in BKD prevalence

Acknowledgements

- ODFW La Grande Fish Health Lab
- Spawning ground surveyors from ODFW, CTUIR, NPT, USFWS and USFS
- Lower Snake River Compensation Plan

'ER SNAKE RIVER PENSATION PLAN