Snake River spring/summer Chinook salmon:

An historical perspective on factors for decline and prospects for recovery

Robin Waples

Northwest Fisheries Science Center National Marine Fisheries Service Seattle, Washington USA

Columbia River

Historical center of distribution for Chinook salmon

Distinctive habitats

Chinook CA-BC

Waples, Teel, Myers, Marshall *Evolution* 2004

Chinook CA-BC

99,100 1.0 46,47,48 26 0.5 79 Marine harvest 0.0 0 -0.5 -1.0 -1.5 K, FGH 1.0 spring run/ 0.5 0.0 -0.5 -1.0 Smolt age -1.5

Waples et al. 2004

Bretz floods

1950s & 1960s

Early research on survival and migration of Snake River spring Chinook

Snake River Spring/Summer Chinook Life Cycle Kareiva et al. 2000 Science

"It's not my fault"

Agriculture

Commercial **Fishing**

Sport Fishing

Ranching

The usual suspects

1960s fish passage research

- Can turbines be made safe for fish?
- Screen turbines and bypass fish
- Transport fish around dams

Snake River spr/sum Chinook Fraction transported

- 1977: all they could collect
- 1980s-1990s: 80-90%
- Since 2005 (remand): 25-40%

Substantial transport benefits for

- Fall chinook
- Steelead
- [Hatchery spr/sum Chinook]

Uncertain benefits for W spr/sum except during low flow years

Source: Status Report, Columbia River Fish Runs and Fisheries, 1938-2002.

ODFW & WDFW

Cumulative impacts -- moderate and extreme

Snake River Chinook hatchery releases (incl presmolts)

Types of benefits to be considered

Conservation

General

Natural pops

- Natural pops
- Harvest
- Mitigation
- Treaty obligations
- Public education

Potential benefits of propagation for natural populations

- 1. Reduce short-term extinction risk
- 2. Maintain population while habitat problems are addressed
- 3. Reseed vacant habitat
- 4. Speed recovery

Risks of captive propagation for natural populations

- 1. Loss of diversity
 - Between populations
 - Within population
- 2. Loss of fitness
- 3. Ecological effects
- 4. Other considerations

Salmon supplementation review

Waples, Ford, Schmitt 2007

	Was it met?		
Objective	Y	N	?
Broodstock collection (representative)			
Age	111	3	8
Run timing	10	2	10
Integrity	17	5	-
Hatchery survival			
Prespawning (90%)	12	6	4
Egg-smolt (70%)	19	2	1
Adult-adult (2x)	12	4	6
Population increase (20%)	8	11	3
Natural spawning (comparable)	1	2	19
Sustainable	-	2	20

IDAHO

Assessing supplementation effects at the level of the ESU

Time series of wild spawners

Model from the finance world

Advertising effect

Model for supplementation effect

Supplementation effect

$$\begin{aligned} \frac{\text{State equation}}{X_t &= X_{t-1} + \alpha + \beta I_t} + W_t & W_t &\sim N \left(0, Q\right) \\ & \textit{rate of change in density} \end{aligned}$$

Results: Not much effect overall

Annual change: $\alpha + \beta I_t$

Supplementation effect

Nonindigenous fish species

The 5th H

Levin, Achord, Feist, & Zabel. 2001

Nonnative stocking (1978-2008)

B. Sanderson

VIABLE SALMONID POPULATIONS

- Identify population structure within ESUs
- Assess population viability

Abundance

Productivity

Spatial structure

Diversity (genetic and life history)

Assess ESU viability

Trade-off – freshwater vs. estuary/early ocean (and biological feasibility)

What about the future?

Climate change
Population growth
Evolutionary responses to human-modifications to salmon ecosystems

Columbia River at Bonneville

Compass-modeled June temperatu

J. Faulkner, unpublished data

Spring/summer adult Chinook passing Lower Granite Dam 95% of the run, with run defined as ending 8/31 rate: -0.32 days/year, p=0.09

Smolt timing at LGD: upper quantiles now earlier

Western Washington: summer climate becomes as warm as today's interior Columbia Basin Interior Columbia: become as warm as today's Central Valley in California

Mantua et al. 2010: Climatic Change

Transformation From Snow to Rain

^{*} Based on Composite Delta Method scenarios (multimodel average change in T & P)

Models project **more winter flooding** in sensitive "transient runoff" basins common in eastern OR and Idaho

Would likely reduce survival rates for eggs and parr

Ratio of 20-year Flood Statistics

(21st Century ÷ 20th Century)

o 0.9 - 1.1 • 1.5 - 1.7

○ 1.1 - 1.3 ● > 1.7

2020s

A₁B

2040s

2080s

Number of weeks T > 21C

Weeks with T > 21C

Thermal stress season

Extended periods (up to 12 weeks by 2100) with weekly average water temperatures > 21C

Mantua et al. 2010: Climatic Change

The Dalles Dam

John Day Dam Fish ladder

19.3 lb walleye From McNary pool

Smallmouth bass John Day Reservoir

2002 2004 1980 1985 1990 1995 2000 2005 Years

200

150

100

50

tournaments

B. Sanderson

WA Bass tournaments

600K ↔

300K

2006 Snake R spr/sum CK at LGD

Columbia River water travel time vs # dams

Waples,
Zabel,
Scheuerell,
Sanderson
2008 Mol Ecol

Mismatch between smolt arrival time and optimal arrival time for marine survival

A likely consequence of climate change is decoupling of historical relationships between FW and marine environments

Adaptive plasticity requires reliable cues

Waples, Zabel, Scheuerell, Sanderson 2008 Mol Ecol

Thanks

Steve Achord, Tim Beechie, Craig Busack, Tom Cooney, Lisa Crozier, Nate Mantua, Beth Sanderson, Mark Scheuerell, John Williams

Rich Carmichael LSRCP folks

Source: Status Report, Columbia River Fish Runs and Fisheries, 1938-2002.

ODFW & WDFW

Spatial Structure and Diversity

Spatial Structure

Spatial Distribution of fish and habitat Spatial patterns through time

Diversity

Life history changes
Selective pressures (e.g. domestication)
Habitat diversity

Selective loss of habitat

McClure et al. 2008 Evol Apps

Monthly average flow of the Columbia River, The Dalles

Waples, Zabel, Scheuerell, Sanderson 2008 Mol Ecol

Spatial Structure Guidelines

- Balance between creation and loss of habitat
- Promote natural processes of connectivity
- Don't ignore currently unoccupied habitat
- Maintain source subpopulations

Summary – Life cycle modeling

- Needed improvements may be biologically feasible (note that BiOp-required improvements are not final)
- Achievable increases in estuarine/near-shore ocean dependent on proportion of mortality occurring in estuary
- Increasing ceiling and slope of B-H relationship can yield similar increases to estuarine/near-shore ocean increases

Estuary – some outcomes

- Operations of hydropower system directly affects some characteristics of estuarine habitat, especially amount and quality of shallow water habitat which is most important to certain life history strategies.
- Flow, toxics and habitat primarily affect fry, fingerling and subyearling strategies. Those ESUs and portions of ESUs that produce these strategies are most vulnerable to changes in these factors
- Tern predation primarily affects yearlings. Those ESUs and portions of ESUs that produces yearlings are most vulnerable to this factor.

Summary -- habitat

- Tributary habitat of variable quality
 - Mid-Columbia, portions of Grande Ronde, Upper Salmon and Upper Columbia especially compromised
 - Middle Fork Salmon notably low in habitat impairment
- Estuarine impacts dependent on life history strategy

Summary – fish population status

- Scores may be refined
 - modification to intrinsic potential analysis
- Data availability issues
- Overall, all populations with some capacity for improvement
- Population in Middle Fork Salmon, portions of Clearwater and John Day "least bad"
- Upper Columbia, Walla Walla/Umatilla and chum populations in especially poor status

Beverton-Holt Lower Granite Dam Spring/summer chinook

M. McClure

Flow regime and Chinook life history

Data source: http://www.hydro.washington.edu/2860/report/

Summer rearing sensitivity

Average increase in stream temperature ~1.5°C

Nonindigenous species The 5th H

Bounds to improvement in estuary

