Estimating Spatial Distribution and Abundance of Florida Panthers Using Camera Traps and Telemetry

Robert M. Dorazio¹ David P. Onorato²

¹Wetland and Aquatic Research Center U.S. Geological Survey Gainesville, Florida, USA

²Fish and Wildlife Research Institute Florida Fish and Wildlife Conservation Commission Naples, Florida, USA

Florida Panther Recovery Implementation Team Meeting Gainesville, Florida 07 Apr 2016

Camera Trap Surveys (of elusive, low-density, or wide-ranging species)

Sampling design is crucial

- movement of individuals should ensure detection at multiple locations
- design should induce differential exposure of individuals to detection

Spatially Explicit Modeling of Camera-trap Survey Data

Marked

Partially marked

Unmarked

Dorazio (USGS)

Analysis of camera-trap surveys

07 Apr 2016 3 / 19

Components of Spatially Explicit Models

Ecological process - location of each individual's activity center

- Habitat and other spatial covariates
- Seasonality or time-dependence (dynamic models of directed movements, mortalities, births)

Observational process - detection of each individual at camera locations

- Distance between camera and individual activity center
- Sex-specific differences in extent of movement
- Selection/usage of locations by individuals (e.g., proximity of camera to roads/trails)
- Time-specific periods of an individual's movements
- Continuous period of camera's operation

Data

- T_k = period of operation of camera trap k ($k = 1, \dots, K$)
- $oldsymbol{x}_k =$ location of trap k
- y_{ik} = number of detections of individual i at trap k (i = 1, ..., n)
- t_{ik} = detection times of individual i at trap k
- $oldsymbol{v}(oldsymbol{s})=$ spatial covariates of individual density at location $oldsymbol{s}\in B$
- $oldsymbol{w}_k =$ spatial covariates of encounter rate at trap k
- $\boldsymbol{z}(t_k) = \text{temporal covariates of encounter rate at time } t_k \in (0, T_k]$

Modeling Detections of Marked Individuals

Ecological process

Spatial distribution and abundance of individual activity centers follows a Poisson process with intensity

$$\lambda(s) = \exp(\beta' v(s))$$

Observational process

Temporal distribution and frequency of detections follows a Poisson process with intensity

$$\phi(t_k, \boldsymbol{s}, \boldsymbol{x}_k) = \psi_k \, \gamma(t_k) \, \exp(-||\boldsymbol{s} - \boldsymbol{x}_k||^2 / (2\sigma^2))$$

where

•
$$\psi_k = \exp(\boldsymbol{\alpha}' \boldsymbol{w}_k)$$

• $\gamma(t_k) = \exp(\boldsymbol{\xi}' \boldsymbol{z}(t_k))$

log(λ) = log(64) + 0.5v - 1.0v²
σ = 0.4

•
$$\log(\psi) = \log(0.1) + 1.0w$$

•
$$\xi = -1.0$$

•
$$T_{nite} = T_{day} = 22$$

Simulated Density, Activity Centers, and Detections

	True	Mean	2.5%	97.5%
σ	0.40	0.40	0.40	0.41
ξ	-1.00	-0.98	-1.02	-0.94
$lpha_0$	-2.30	-2.32	-2.35	-2.30
α_1	1.00	1.00	0.99	1.02
β_0	4.16	4.06	3.91	4.21
β_1	0.50	0.33	0.10	0.60
β_2	-1.00	-0.83	-1.06	-0.60

Estimated Density of Undetected Individuals

Image: Image:

Comparison of True and Estimated Densities N = 504, $\hat{N} = 516$ (95% CI: 479–556)

Comparison of True and Estimated Activity Centers of Detected Individuals

Camera-trap Survey of Tigers in Nagarahole National Park, India (Nov 2014 – Jan 2015)

- Area = 862 km^2
- K = 162 cameras
- $\bar{T}_{nite} = 23.4 \text{ days}$
- $\bar{T}_{day} = 21.2 \text{ days}$
- n = 86 tigers
- $y_{..} = 355$ detections

Dorazio (USGS)

Hourly Variation in Detections of Tigers

Dorazio (USGS)

07 Apr 2016 14 / 19

	Mean	2.5%	97.5%
σ	1.71	1.60	1.83
ξ	-1.67	-1.96	-1.38
$lpha_0$	-3.09	-3.27	-2.92
β_0	-2.20	-2.43	-1.99

- Baseline encounter rate during night time = 0.046 detections / day
- Baseline encounter rate during day time = 0.009 detections / day
- Density of individuals = 0.11 tigers $/ \text{ km}^2$

Estimated Density of Tigers in Nagarahole National Park, India ($\hat{\lambda} = 0.11$ tigers km⁻², $\hat{N} = 88.6$ tigers)

07 Apr 2016 16 / 19

Modeling Detections of Unmarked Individuals

Data

- T_k = period of operation of camera trap k ($k = 1, \dots, K$)
- $oldsymbol{x}_k =$ location of trap k
- $y_{k} =$ number of detections at trap k

	Camera trap					
indiv i	1	2	3	•••	K	
1	y_{11}	y_{12}	y_{13}	•••	y_{1K}	
2	y_{21}	y_{22}	y_{23}	•••	y_{2K}	
3	y_{31}	y_{32}	y_{33}	•••	y_{3K}	
4	y_{41}	y_{42}	y_{43}	•••	y_{4K}	
:	:	:	:	:	:	
n	111	119	112		11 V	
	911	912	9113	0	911	
n+1	0	0	0	0	0	
:	:	:	:	:	:	
N	0	0	0	0	0	

Dorazio (USGS)

Data needs

- Spatial shape files of region occupied by panthers
- Camera trap location and period of operation
- Date and time of each detection of unmarked panthers
- Date, time and identity of each detection of panthers bearing a collar
- Spatial shape files of panther habitat covariates
- Trap-specific covariates of encounter rate
- Temporal covariates of encounter rate

Funding:

- Florida Panther Research and Management Trust Fund, Florida Fish and Wildlife Conservation Commission
 - U.S. Geological Survey, Greater Everglades Priority Ecosystems Science
 - Wildlife Conservation Society, New York
 - Centre for Wildlife Studies, Bangalore, India