
Tucannon River Spring Chinook Salmon Hatchery Evaluation Program 2018 Annual Report

Tucannon River Spring Chinook Salmon Hatchery Evaluation Program

2018 Annual Report

by

Michael P. Gallinat Dane E. Kiefel

Washington Department of Fish and Wildlife Fish Program/Science Division 600 Capitol Way North Olympia, Washington 98501-1091

Prepared for:

U.S. Fish and Wildlife Service Lower Snake River Compensation Plan Office 1387 S. Vinnell Way, Suite 343 Boise, Idaho 83709 Cooperative Agreement: F16AC00033

August 2019

Acknowledgments

The Tucannon River Spring Chinook Salmon Hatchery Evaluation Program is the result of efforts by many individuals within the Washington Department of Fish and Wildlife (WDFW) and from other agencies.

We would like to express our gratitude to Ace Trump, Lyons Ferry Hatchery Complex Manager and Hatchery Specialists Steve Jones, Dan Pounds, Doug Maxey, and Derek Gloyn for their cooperation with hatchery sampling, providing information regarding hatchery operations and hatchery records, and their input on evaluation and research activities. We also thank all additional hatchery personnel who provide the day-to-day care of the spring Chinook and for their assistance with hatchery spawning, sampling, and record keeping.

We thank Andrew Claiborne for providing scale ages and Kelly Britt for providing information on fish health during the year. Special thanks go to David Bramwell for help formatting this report.

We thank the staff of the Snake River Lab; in particular, Joe Bumgarner, Ashly Beebe, Sarah Golden, Todd Miller, Afton Oakerman, Lance Ross and seasonal workers Justin Byers, Conner Girardin, Ashish Katru, Jarrod Miller, Daniel Olson, and Eric Randell who helped collect the information presented in this report.

We thank Joe Bumgarner, Alf Haukenes, Rod Engle, and Lance Campbell for reviewing the draft report.

The United States Fish and Wildlife Service through the Lower Snake River Compensation Plan Office funds the supplementation program. A grant through the Bonneville Power Administration provided funding for a portion of the hatchery program PIT tags.

Abstract

Lyons Ferry Hatchery (LFH) and Tucannon Fish Hatchery (TFH) were built/modified under the Lower Snake River Fish and Wildlife Compensation Plan. One objective of the Plan is to compensate for the estimated annual loss of 1,152 Tucannon River spring Chinook caused by hydroelectric projects on the Snake River. This report summarizes activities of the Washington Department of Fish and Wildlife Lower Snake River Hatchery Evaluation Program for Tucannon River spring Chinook for the period May 2018 to April 2019.

A total of 431 salmon were captured in the TFH trap in 2018 (62 natural adults, 11 natural jacks, 297 hatchery adults, and 61 hatchery jacks). Of these, 160 adults (37 natural, 123 hatchery) were collected and hauled to LFH for broodstock, 38 adipose clipped strays were killed outright, 18 were passed upstream (15 natural, 3 hatchery), and the remaining fish (215) were held at LFH for adult outplanting. During 2018, 20 (12.5%) salmon collected for broodstock died prior to spawning.

Spawning of supplementation fish occurred once a week between 28 August and 18 September, with peak eggtake occurring on 11 September. A total of 212,973 eggs were collected from 9 natural and 67 hatchery-origin female Chinook. Egg mortality to eye-up was 3.1% (6,639 eggs) which left 206,334 live eggs. An additional 0.95% (1,970) loss of sac-fry left 204,364 BY 2018 fish for production.

Weekly spawning ground surveys were conducted from 21 August and were completed by 1 October 2018. A total of 109 redds and 67 carcasses (9 natural, 58 hatchery) were found. Seventy-seven redds (76% of the total) were counted above the adult trap. Based on redd counts, carcasses recovered, and broodstock collection, the estimated return to the river for 2018 was 545 spring Chinook (80 natural adults, 0 natural jacks and 425 hatchery-origin adults, 40 hatchery jacks).

Volitional release of the 2017 BY smolts began on 4 April and continued until 3 May, 2019 when the remaining fish were forced out. An estimated 144,219 BY17 smolts were released.

Evaluation staff operated a downstream migrant trap to provide juvenile outmigration estimates. During the 2017/2018 emigration, we estimated that 8,058 (4,618-16,014 95% C.I.) natural spring Chinook (BY 2016) smolts emigrated from the Tucannon River.

Smolt-to-adult return rates (SAR) for natural origin salmon are almost eight times higher on average (based on geometric means) than hatchery origin salmon. However, hatchery salmon

survive almost three times greater than natural salmon from parent to adult progeny over the length of the project.

A study was conducted for three brood years (BY11-13) to determine if rearing full term at TFH would return more adults back to the Tucannon River versus the current protocol of egg incubation and early life rearing at LFH. This study concluded with the final adult returns in 2018. Results from PIT tag detections did not show a significant benefit in either survival or homing back to the Tucannon River by rearing fish at TFH instead of LFH. Based on the findings, we will continue to use LFH for holding, spawning, and incubation and early life rearing of Tucannon River spring Chinook.

Table of Contents

List of Tables	ii
List of Figures	iv
List of Appendices	v
Introduction	
Program ObjectivesESA Permits	
Facility Descriptions Tucannon River Watershed Characteristics	
Adult Salmon Evaluation	
Broodstock Trapping	
Broodstock Mortality	
Broodstock Spawning	
Broodstock BKD Screening and Virology Testing	
Adult Outplanting	
Natural Spawning	
Historical Trends in Natural Spawning	
Stream Nutrient Enrichment	
Genetic Sampling	
Age Composition, Length Comparisons, and Fecundity	
Arrival and Spawn Timing Trends	
Total Run-Size	
Spawning Escapement	
Coded-Wire Tag Sampling	
Stray Salmon into the Tucannon River	
Adult PIT Tag Returns	
Juvenile Salmon Evaluation	32
Hatchery Rearing, Marking, and Release	32
Smolt Trapping	33
Smolt Migration to Lower Monumental and McNary Dams	36
Survival Rates	37
Fishery Contribution and Out-of-Basin Straying	
Adjusted Hatchery SAS	
LFH vs. TFH Reared Comparison	
Juvenile Survival	
Adult Returns	49
Conclusions and Recommendations	52
Literature Cited	55

List of Tables

Table 1.	Description of five strata within the Tucannon River
Table 2.	Numbers of spring Chinook salmon captured at the TFH trap, trap mortalities, strays or jacks killed outright, fish collected for broodstock, and passed upstream or held for adult outplanting for natural spawning from 1986-2018
Table 3.	Numbers of pre-spawning mortalities and percent of fish collected for broodstock at TFH and held at TFH (1985-1991) or LFH (1992-2018)
Table 4.	Number of fish spawned or killed outright (K.O.), estimated egg collection, and egg mortality of natural and hatchery origin Tucannon River spring Chinook salmon at LFH in 2018
Table 5.	Enzyme Linked Immunosorbent Assay (ELISA) values for hatchery spawned Tucannon River spring Chinook females, 2018
Table 6.	The number of Tucannon River spring Chinook salmon outplanted in the Tucannon River by release location during 2018
Table 7.	Numbers and general locations of salmon redds and carcasses (includes pre-spawn mortalities) recovered on the Tucannon River spawning grounds, 2018 (the Tucannon Hatchery adult trap is located at rkm 59)
Table 8.	Number of spring Chinook salmon redds and redds/km (in parenthesis) by stratum and year, and the number and percent of redds above and below the TFH adult trap in the Tucannon River, 1985-2018
Table 9.	Summary of Chinook salmon carcass distribution on the Tucannon River on 5 October 2018 and 11-12 January 2019
Table 10.	Average number of eggs/female (n, SD) by age group of Tucannon River natural and hatchery origin broodstock, 1990-2018 (partial spawned females are excluded) 19
Table 11.	Peak dates of arrival of natural and hatchery salmon to the TFH adult trap and peak (date) and duration (number of days) for spawning in the hatchery and river, 1986-2018
Table 12.	Estimated spring Chinook salmon run to the Tucannon River and recovered prespawn mortalities (PSM), 1985-2018
Table 13.	Estimated spawning escapement and the calculation methodology used for the 1985 to 2018 run years
Table 14.	Coded-wire tag codes of hatchery salmon sampled at LFH and the Tucannon River, 2018
Table 15.	Spring Chinook salmon (natural and hatchery) sampled from the Tucannon River, 2018
Table 16.	Tucannon River PIT tag array detections of spring Chinook originally tagged at locations other than the Tucannon River during 2018

Table 17.	Number of Tucannon River spring Chinook juvenile fish PIT tagged by origin and calendar year and adult returns detected (%) in the Columbia River System by origin
Table 18.	Number and origin of PIT tagged Tucannon River spring Chinook returns that overshoot the Tucannon River (includes fish that were last detected returning back downstream towards the Tucannon River) and also detected at Lower Granite Dam (LGR) that stayed above LGR Dam
Table 19.	Sample size (N), mean length (mm), coefficient of variation (CV), condition factor (K), mean weight (g), and precocity of 2017 BY juveniles sampled at TFH, and Curl Lake AP
Table 20.	Preliminary spring Chinook salmon releases into the Tucannon River, 2019 release year
Table 21.	Median and mean travel time and outmigration speed of hatchery and natural-origin Tucannon River spring Chinook to Lower Monumental and McNary Dams in 2018
Table 22.	Estimates of <i>natural in-river produced</i> Tucannon spring Chinook salmon (both hatchery and natural origin parents) abundance by life stage for 1985-2018 broods.38
Table 23.	Estimates of Tucannon spring Chinook salmon abundance (<i>spawned and reared in the hatchery</i>) by life stage for 1985-2018 broods
Table 24.	Percent survival by brood year for juvenile salmon and the multiplicative advantage of hatchery-reared salmon over naturally-reared salmon in the Tucannon River 40
Table 25.	Adult returns and SARs of natural salmon to the Tucannon River for brood years 1985-2015
Table 26.	Adult returns and SARs of hatchery salmon to the Tucannon River for brood years 1985-2015
Table 27.	Progeny-to-parent survival estimates of Tucannon River spring Chinook salmon from 1985 through 2014 brood years (2014 brood year incomplete)
Table 28.	Summary of Tucannon River spring Chinook recovered outside of the Tucannon River, and represent possible strays to other areas (2005-2015 brood years)
Table 29.	Hatchery SAS adjusted for recoveries from outside the Tucannon River subbasin as reported in the RMIS database, 1985-2013 brood years
Table 30.	Release number, size at release (g), and number of Tucannon River hatchery spring Chinook PIT tagged by brood year (BY) for each rearing location and SURPH survival probabilities from Curl Lake Acclimation Pond to Lower Monumental Dam for the 2011 to 2013 brood years
Table 31.	Returning PIT tagged spring Chinook detected by age in the Columbia and Snake river mainstem corridor for smolt-to-adult survival (SAS) and detected in the Tucannon River for smolt-to-adult return (SAR) for the LFH and TFH reared groups (2011-2013 brood years) of Tucannon River spring Chinook

List of Figures

Figure 1.	Location of the Tucannon River, and Lyons Ferry and Tucannon Hatcheries within the Snake River basin
Figure 2.	Historical Below Low and Low, and Moderate and High ELISA values for Tucannon River spring Chinook salmon female broodstock for the 1998 to 2018 return years 8
Figure 3.	Number of redds/km and percentage of redds above the adult trap on the Tucannon River, 1986-2018
Figure 4.	Historical (1985-2017), and 2018 age composition (run year) for spring Chinook in the Tucannon River
Figure 5.	Weighted mean age of natural and hatchery origin males (NM, HM) and natural and hatchery origin females (NF, HF) for the 1985 to 2013 brood years for spring Chinook in the Tucannon River
Figure 6.	Mean post-orbital to hypural-plate (POH) length comparisons between age-4 natural and hatchery-origin males (NM and HM) and natural and hatchery-origin females (NF and HF) with 95% confidence intervals for the years 1985-2018
Figure 7.	Cumulative run timing by date at the Tucannon Fish Hatchery adult trap on the Tucannon River for both natural and hatchery origin Tucannon River spring Chinook salmon, 1994-2018
Figure 8.	Emigration timing of natural spring Chinook salmon captured during smolt trap operations (rkm 3) on the Tucannon River for the 2017-18 migration year
Figure 9.	Length frequency distribution of sampled natural spring Chinook salmon captured in the Tucannon River smolt trap, 2017/2018 season
Figure 10.	Return per spawner (with replacement line) for the 1985-2014 brood years (2014 incomplete brood year)
Figure 11.	Tucannon River spring Chinook natural origin returns with the moving ten-year geometric mean (black line) for the 1985-2018 run years
Figure 12.	Total escapement for Tucannon River spring Chinook salmon for the 1985-2018 run years

List of Appendices

Appendix A:	Annual Section 10 Permit #18024 Takes for 2018, and NEOR/SEWA Terms and Conditions Biological Opinion Reporting Requirements60
Appendix B:	Spring Chinook Captured, Transported to Lyons Ferry Hatchery, or Passed Upstream at the Tucannon Hatchery Trap in 2018
Appendix C:	Age Composition by Brood Year for Tucannon River Spring Chinook Salmon (1985-2013 BYs)
Appendix D:	Total Estimated Run-Size of Tucannon River Spring Chinook Salmon (1985-2018)
Appendix E:	Stray Hatchery-Origin Spring Chinook Salmon in the Tucannon River (1990-2018)
Appendix F:	Final PIT Tag Detections of Returning Tucannon River Spring Chinook74
Appendix G:	Historical Hatchery Releases (1987-2019 Release Years)
Appendix H:	Numbers of Fish Species Captured by Month in the Tucannon River Smolt Trap during the 2018 Outmigration96
Appendix I:	Proportionate Natural Influence (PNI) for the Tucannon Spring Chinook Population (1985-2018)98
Appendix J:	Recoveries of Coded-Wire Tagged Salmon Released into the Tucannon River for the 1985-2015 Brood Years
Appendix K:	Summary of egg distribution, egg loss, ponding numbers, and mean size for the LFH and TFH reared groups (2011-2013 brood years)116

Introduction

Program Objectives

Legislation under the Water Resources Act of 1976 authorized the establishment of the Lower Snake River Compensation Plan (LSRCP) to help mitigate for the losses of salmon and steelhead runs due to construction and operation of the Snake River dams and authorized hatchery construction and production in Washington, Idaho, and Oregon as a mitigation tool (USACE 1975). In Washington, Lyons Ferry Hatchery (LFH) was constructed and Tucannon Fish Hatchery (TFH) was modified. Under the mitigation negotiations, local fish and wildlife agencies determined through a series of conversion rates of McNary Dam counts that 2,400 spring Chinook (2% of passage at McNary Dam) annually escaped into the Tucannon River. The agencies also estimated a 48% cumulative loss rate to juvenile downstream migrants passing through the four lower Snake River dams. As such, 1,152¹ lost adult Tucannon River origin spring Chinook needed to be compensated for above the project area, with the expectation that the other 1,248 (52%) would continue to come from natural production. An additional 4,608 were originally assumed to have been harvested in downriver fisheries or in the ocean, and was an additional objective of the plan. The agencies also determined through other survival studies at the time that a smolt-to-adult survival rate (SAR) to the project area of 0.87% was a reasonable expectation for spring and summer Chinook salmon. Based on an assumed 0.87% above project area SAR and the 1,152 above project area mitigation goal it was determined that 132,000 smolts needed to be released annually. In 1984, Washington Department of Fish and Wildlife² (WDFW) began to evaluate the success of these two hatcheries in meeting the mitigation goal, and identifying factors that would improve performance of the hatchery fish.

In an attempt to increase adult returns and come closer to achieving the LSRCP mitigation goal, the co-managers agreed to increase the conventional supplementation program goal to 225,000 yearling smolts annually beginning with the 2006 brood year. Size at release was increased to 38 g fish [12 fish/lb (fpp)] beginning with the 2011 brood year. This report summarizes work performed by the WDFW Tucannon Spring Chinook Evaluation Program from May 2018 through April 2019.

¹The project area escapement is 1,152. It was also assumed that four times that number (4,608 fish) would be harvested below the project area. Here "project area" is defined as above Ice Harbor Dam.

² Formerly Washington Department of Fisheries.

ESA Permits

The Tucannon River spring Chinook population was originally listed as "endangered" under the Endangered Species Act (ESA) on April 22, 1992 (FR 57 No. 78: 14653). The listing status was changed to "threatened" in 1995 (April 17, 1995; FR 60 No. 73: 19342). The listing was reviewed again in 1999 (FR 64 (57): 14517-14528) with the population remaining listed as "threatened" as part of the Snake River Spring/Summer Chinook Salmon evolutionary significant unit (ESU). The WDFW was originally issued a Section 10 Permit (#848 – broodstock collection and monitoring) which expired in March 1998. Permits #1126 and #1129 were issued in 1998 to allow continued take for this program, but those permits have since expired. A Hatchery and Genetic Management Plan (HGMP) was originally submitted as the application for a new Section 4 (d) Permit for this program in 2005. An updated HGMP requesting ESA Section 10 permit coverage was submitted in 2011, and was approved in 2016 (Permit #18024). This annual report summarizes all work performed by WDFW's LSRCP Tucannon Spring Chinook Salmon Evaluation Program during 2018. Numbers of direct and indirect takes of listed Snake River spring Chinook (Tucannon River stock) for the 2018 calendar year are presented in Appendix A (Tables 1-2), along with information required for the NEOR/SEWA Biological Opinion reporting.

Facility Descriptions

Lyons Ferry Hatchery is located on the Snake River (rkm 90) at its confluence with the Palouse River and has eight deep wells that produce nearly constant 11° C water (Figure 1). It is used for adult broodstock holding and spawning, and early life incubation and rearing. All juvenile fish are marked and returned to TFH in late September/October for final rearing and acclimation.

Tucannon Fish Hatchery, located at rkm 59 on the Tucannon River, has an adult collection trap on site (Figure 1). Adults returning to TFH are transported to LFH and held until spawning. Juveniles are reared at TFH through the winter on a combination of well, spring, and river water. River water is the primary water source, which allows for a more natural winter temperature profile. In February/March, the fish are transported to Curl Lake Acclimation Pond (AP) located at rkm 66, a 0.85-hectare natural bottom lake with a mean depth of 2.7 m, with the smolts volitionally released during April.

Tucannon River Watershed Characteristics

The Tucannon River empties into the Snake River between Little Goose and Lower Monumental Dams approximately 622 rkm from the mouth of the Columbia River (Figure 1). Stream elevation rises from 150 m at the mouth to 1,640 m at the headwaters (Bugert et al. 1990). Total

watershed area is approximately 1,295 km². Local habitat problems related to logging, road building, recreation, and agriculture/livestock grazing have limited the production potential of spring Chinook in the Tucannon River. Land use in the Tucannon watershed is approximately 36% grazed rangeland, 33% dry cropland, 23% forest, 6% WDFW, and 2% other use (Tucannon Subbasin Summary 2001). Five unique strata have been distinguished by predominant land use, habitat, and landmarks (Figure 1; Table 1) and are referenced throughout this report.

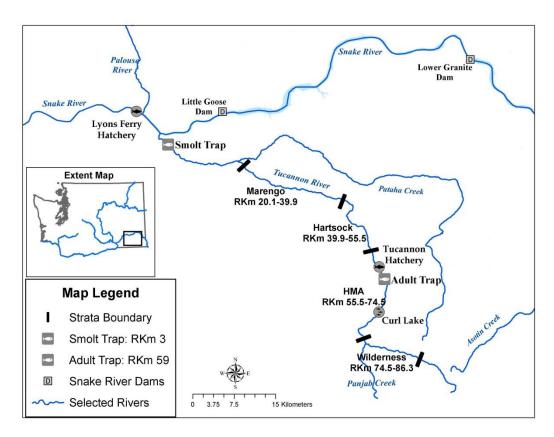


Figure 1. Location of the Tucannon River, and Lyons Ferry and Tucannon Hatcheries within the Snake River basin.

Table 1. Description of five strata within the Tucannon River.

			River
Strata	Land Ownership/Usage	Spring Chinook Habitata	Kilometerb
Lower	Private/Agriculture & Ranching	Not-Usable (temperature limited)	0.0-20.1
Marengo	Private/Agriculture & Ranching	Marginal (temperature limited)	20.1-39.9
Hartsock	Private/Agriculture & Ranching	Fair to Good	39.9-55.5
HMA	State & Federal/Recreational	Good to Excellent	55.5-74.5
Wilderness	Federal/Recreational	Excellent	74.5-86.3

^a Strata were based on water temperature, habitat, and landowner use.

b Rkm descriptions: 0.0-mouth at the Snake River; 20.1-Territorial Rd.; 39.9-Marengo Br.; 55.5-HMA Boundary Fence; 74.5-Panjab Br.; 86.3-Rucherts Camp.

Adult Salmon Evaluation

Broodstock Trapping

The allowed collection goal for broodstock is 170 adult salmon, depending upon size and fecundity, collected from throughout the duration of the run to meet the smolt production/release goal of 225,000. The proportion of natural origin fish incorporated into the broodstock is based on the estimated run size and the Tucannon Spring Chinook Salmon HGMP sliding scale. Additional jack salmon may be collected up to their proportion of the run with an upper limit of 10% used in broodstock, if needed. Returning Tucannon hatchery salmon were identified by coded-wire tag (CWT) in the snout, with no adipose fin clips. All adipose clipped fish captured at the trap are killed outright as strays.

The TFH adult trap began operation in February (for steelhead) with the first spring Chinook captured on 24 May (Appendix B). State and Tribal Fisheries Managers decided to collect all Tucannon River returns that would not be used for broodstock and hold them at LFH for outplanting back into the river closer to the commencement of spawning (See Adult Outplanting Section). These measures were taken to reduce potential in-river pre-spawn mortality that has been observed in preceding years. Adipose clipped strays (38 adults and jacks) were killed outright at the trap and all unclipped jacks were transported to LFH for holding for potential fisheries management options (outplanting, broodstock supplementation, or killed outright). The trap was operated through 30 September. A total of 431 fish entered the trap (62 natural adults, 11 natural jacks, 297 hatchery adults, and 61 hatchery jacks), and 37 natural (37 adults, 0 jacks) and 123 hatchery (123 adults, 0 jacks) spring Chinook were collected and hauled to LFH for broodstock (Table 2, Appendix B). A total of 215 fish (14 natural adults, 7 natural jacks, 135 hatchery adults, 59 hatchery jacks) were given a right opercle punch and were held at LFH for adult outplanting (Table 2, Appendix B). Adults collected for broodstock were injected with tulathromycin (Draxxin³) at 2.5 mg/kg, but fish held for adult outplants were not injected per WDFW Fish Health regulations. Antibiotic injections for broodstock were repeated 30 days prior to spawning. Broodstock and fish held at LFH received formalin drip treatments during holding at 167 ppm every other day at LFH to control fungus.

Tucannon River Spring Chinook Salmon Hatchery Evaluation Program 2018 Annual Report

³ The use of trade names does not imply endorsement by the Washington Department of Fish and Wildlife.

Table 2. Numbers of spring Chinook salmon captured at the TFH trap, trap mortalities, strays or jacks killed outright, fish collected for broodstock, and passed upstream or held for adult outplanting for natural spawning from 1986-2018.

	Canture	d at Trap	Tran M	ortalities	Killed Outright ^a		dstock lected		ssed tream		or Adult lanting
Year	Natural	Hatchery	Natural	Hatchery	Hatchery	Natural	Hatchery	Natural	Hatchery	Natural	Hatchery
1986	247	0	0	0	0	116	0	131	0	0	0
1987	209	0	0	0	0	101	0	108	0	0	0
1988	267	9	0	0	0	116	9	151	0	0	0
1989	156	102	0	0	0	67	102	89	0	0	0
1990	252	216	0	1	0	60	75	192	140	0	0
1991	109	202	0	0	0	41	89	68	113	0	0
1992	242	305	8	3	0	47	50	187	252	0	0
1993	191	257	0	0	0	50	47	141	210	0	0
1994	36	34	0	0	0	36	34	0	0	0	0
1995	10	33	0	0	0	10	33	0	0	0	0
1996	76	59	1	4	0	35	45	40	10	0	0
1997	99	160	0	0	0	43	54	56	106	0	0
1998 ^b	50	43	0	0	0	48	41	1	1	0	0
1999 ^c	4	139	0	1	0	4	135	0	0	0	0
2000	25	180	0	0	17	12	69	13	94	0	0
2001	405	276	0	0	0	52	54	353	222	0	0
2002	168	610	0	0	0	42	65	126	545	0	0
2003	84	151	0	0	0	42	35	42	116	0	0
2004	311	155	0	0	0	51	41	260	114	0	0
2005	131	114	0	0	3	49	51	82	60	0	0
2006	61	78	0	1	2	36	53	25	22	0	0
2007	112	112	0	0	6	54	34	58	72	0	0
2008	114	386	0	0	1	42	92	72	293	0	0
2009	390	835	0	0	7	89	88	301	740	0	0
2010	774	796	0	0	9	86	87	688	700	0	0
2011	400	383	0	0	6	89	77	311	300	0	0
2012	240	301	0	0	6	93	77	147	218	0	0
2013	271	268	0	0	2	98	60	173	206	0	0
2014^{d}	343	215	0	0	0	86	41	257	174	0	0
2015	285	594	0	0	32	101	30	126	348	58	184
2016	127	468	0	0	114	55	71	6	19	66	264
2017	26	237	0	0	15	18	93	0	0	8e	129 ^e
2018	73	358	0	0	38	37	123	15	3	21	194

^a Fish identified as strays at the adult trap are killed outright. Some hatchery jacks were killed outright in 2016.

^b Two males (one natural, one hatchery) captured were transported back downstream to spawn in the river.

^c Three hatchery males that were captured were transported back downstream to spawn in the river.

^d Ninety-four natural origin fish were collected for broodstock; however, eight natural origin females were returned to the river for natural spawning leaving a total of 86 natural origin fish collected for broodstock.

^e None of the fish held for adult outplanting in 2017 were outplanted. All of the fish held for adult outplanting were < 61 cm in fork length (jack size) and were either used to supplement broodstock (natural jacks) or were killed outright.

Broodstock Mortality

Twenty (12.5%) of the 160 salmon collected for broodstock died prior to spawning in 2018 (Table 3). This rate was higher than recent years, even after the re-initiation of antibiotic injections in 2018 after the practice was stopped for the 2017 BY, and may have been due to handling. However, even higher mortality was experienced when fish were held at TFH (1986-1991), likely due to higher water temperatures (Table 3). Two of the pre-spawn mortalities during 2018 were stray Umatilla River hatchery males (CWT 090918).

Table 3. Numbers of pre-spawning mortalities and percent of fish collected for broodstock at TFH and held at TFH (1985-1991) or LFH (1992-2018).

		Natural				Hatchery		
Year	Male	Female	Jack	% of collected	Male	Female	Jack	% of collected
1985	3	10	0	59.1	_	_		_
1986	15	10	0	21.6	_	_		_
1987	10	8	0	17.8	_	_		_
1988	7	22	0	25.0	_	_	9	100.0
1989	8	3	1	17.9	5	8	22	34.3
1990	12	6	0	30.0	14	22	3	52.0
1991	0	0	1	2.4	8	17	32	64.0
1992	0	4	0	8.2	2	0	0	4.0
1993	1	2	0	6.0	2	1	0	6.4
1994	1	0	0	2.8	0	0	0	0.0
1995	1	0	0	10.0	0	0	3	9.1
1996	0	2	0	5.7	2	1	0	6.7
1997	0	4	0	9.3	2	2	0	7.4
1998	1	2	0	6.3	0	0	0	0.0
1999	0	0	0	0.0	3	1	1	3.8
2000	0	0	0	0.0	1	2	0	3.7
2001	0	0	0	0.0	0	0	0	0.0
2002	0	0	0	0.0	1	1	0	3.1
2003	0	1	0	2.4	0	0	1	2.9
2004	0	3	0	5.9	0	0	1	2.4
2005	2	0	0	4.1	1	2	0	5.9
2006	0	0	0	0.0	1	0	0	1.9
2007	0	2	1	5.6	0	2	0	5.9
2008	1	1	0	4.8	0	0	1	1.1
2009	0	0	0	0.0	0	2	0	2.3
2010	0	0	0	0.0	0	0	0	0.0
2011	0	0	0	0.0	0	0	0	0.0
2012	0	0	0	0.0	1	2	0	3.9
2013	2	3	0	5.1	0	2	0	3.3
2014	0	1	0	1.2	0	0	0	0.0
2015	0	1	0	1.0	0	1	0	3.3
2016	0	1	0	1.8	2	0	0	2.8
2017	0	2	0	12.5	4	8	0	12.6
2018	2	2	0	10.8	12	4	0	13.0

Broodstock Spawning

Spawning at LFH was conducted once a week from 28 August to 18 September, with peak eggtake occurring on 11 September. During the spawning process, the eggs of two females were split in half and fertilized by two males following a 2 x 2 factorial spawning matrix approach. Factorial mating can have substantial advantages in increasing the genetically effective number of breeders (Busack and Knudsen 2007). The priority order of crosses was Natural x Hatchery, Natural x Natural, and Hatchery x Hatchery, depending upon availability and origin of ripe fish on a weekly basis.

A total of 212,973 eggs were collected from 76 spawned females (Table 4). Eggs were initially disinfected and water hardened for one hour in an iodophor (buffered iodine) solution (100 ppm). The eggs were incubated in vertical tray incubators. Fungus on the incubating eggs was controlled with formalin applied every-other day at 1,667 ppm for 15 minutes. Mortality to eye-up was 3.1%, which left 206,334 live eggs. An additional 0.95% (1,970) loss of eggs and sac-fry left 204,364 fish for production.

Table 4. Number of fish spawned or killed outright (K.O.), estimated egg collection, and egg mortality of natural and hatchery origin Tucannon River spring Chinook salmon at LFH in 2018. (Numbers in parentheses were live spawned).

	Natural Origin						
	Males		Jacks		Females		
Spawn Date	Spawned	K.O.	Spawned	K.O.	Spawned	K.O.	Eggs Taken
8/28	0(2)						
9/04	1 (13)				3		8,158
9/11	12 (10)				3		9,816
9/18	11				3		8,823
Totals	24				9		26,797
Egg Mortality							553

			Н	atchery	Origin		
	Males		Jacks		Females		
Spawn Date	Spawned	K.O.	Spawned	K.O.	Spawned	K.O.	Eggs Taken
8/28					2		5,453
9/04	3				13		32,138
9/11	18 (1)	1 ^a			38		106,232
9/18	17				14	1 ^a	42,353
Totals	38	1			67	1	186,176
Egg Mortality							6,086

a Green/unripe fish.

Broodstock BKD Screening and Virology Testing

Broodstock females were screened for Bacterial Kidney Disease (BKD), caused by the bacterium *Renibacterium salmoninarum*, using Enzyme Linked Immunosorbent Assay (ELISA). Only 4% of the spawned females had high values in 2018 (Table 5). This is considerably lower than values from 2017, which were believed to be directly related to the decision to suspend antibiotic injections during that year (Figure 2). Eggs and progeny from high BKD ELISA broodstock were segregated from those of below low BKD ELISA broodstock.

Spawned females were also examined for viruses and sampling showed no evidence of virus in the samples tested.

Table 5. Enzyme Linked Immunosorbent Assay (ELISA) values for hatchery spawned Tucannon River spring Chinook females, 2018.

		Number of	
ELISA Value	ELISA O.D.	Females	Percent (%)
Below Low	< 0.099	73	96.1
Low	0.099 - 0.198	0	0.0
Moderate	0.199 - 0.450	0	0.0
High	> 0.450	3	3.9
Total		76	100.0

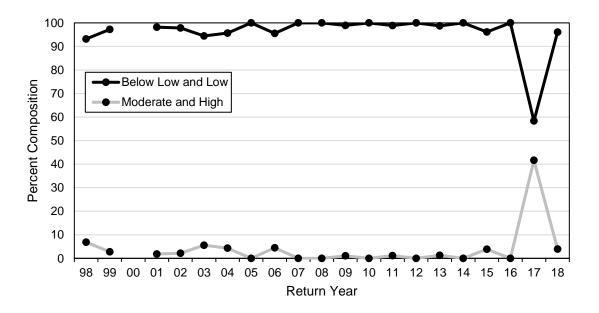


Figure 2. Historical Below Low and Low, and Moderate and High ELISA values for Tucannon River spring Chinook salmon female broodstock for the 1998 to 2018 return years.

Adult Outplanting

After discussions with the Tribal co-managers, it was decided to collect all returning fish not collected for broodstock or killed outright (hatchery strays) and hold them at LFH for adult outplanting back into the river during late August near the on-set of spawning. This joint decision was made due to the relatively low run size and the high pre-spawn mortality rate of adult spring Chinook salmon that has been documented in the Tucannon River in recent years (Gallinat and Ross 2014; Gallinat and Ross 2015; Snake River Lab 2015).

A total of 215 fish (21 natural origin, 194 hatchery origin) were collected for adult outplanting at the adult trap and given a right opercle punch. Held fish were treated with formalin to control fungus growth, but were not injected with antibiotics. Of the fish that were held, 12 hatchery origin fish died at LFH (5.6% pre-spawn mortalities). The remaining 203 fish were transported back to the river in small groups (~15 pairs/group) and released above Curl Lake (rkm 65.6) at six different locations on 16 August and 17 August (Table 6). Fish captured in the adult trap after 17 August were given a left opercle punch (LOP) and passed upstream. Stream surveys were conducted prior to and following adult outplanting and no pre-spawn mortalities of outplanted fish were recovered.

The furthest downstream an outplanted fish was recovered was rkm 64.8, suggesting that movement of outplanted fish from the release sites was negligible. Some redd superimposition was observed in the upper watershed.

Table 6. The number of Tucannon River spring Chinook salmon outplanted in the Tucannon River by release location during 2018.

	Release					
Date	Location	Rkm	Females	Males	Jacks	Total
8/16/18	Lady Bug Flat Campground	77.8	15	7	13	35
8/16/18	Campground Kiosk	76.0	16	7	13	36
8/16/18	Panjab Bridge	74.5	15	6	13	34
8/16/18	Private Lands Campsite	73.1	18	6	13	37
8/17/18	Across from Camp Wooten	68.4	16	6	9	31
8/17/18	Curl Lake Intake	66.1	21	5	4	30
Totals			101	37	65	203

Natural Spawning

Pre-spawn mortality surveys were conducted from 15 June to 20 August during 2018, after which regular weekly spawning ground surveys commenced. Although fish were not passed above the trap prior to 17 August, pre-spawn mortality surveys were still conducted upstream of the trap in case fish were able to bypass the trap. The pre-spawn mortality surveys covered from Panjab Bridge (rkm 74.5) to Bridge 10 (rkm 43.3) and totaled 88 river kilometers. Only two unidentifiable backbones were found, and those were recovered below the adult trap (one on 3 July at rkm 58.2 and one on 13 July at rkm 57.4). Cause of death could not be determined for either of the two pre-spawn mortalities.

Weekly spawning ground surveys were conducted from 21 August to 1 October 2018 and a total of 231 river kilometers were surveyed. One hundred-nine redds were counted and 9 natural and 58 hatchery origin carcasses were recovered (Table 7). Seventy-seven redds (71% of total) and 51 carcasses (76% of total) were found above the adult trap. All of the 16 carcasses recovered below the trap were hatchery strays (two CWT 090910, two CWT 090918, and 12 AD/No wire).

Table 7. Numbers and general locations of salmon redds and carcasses (includes pre-spawn mortalities) recovered on the Tucannon River spawning grounds, 2018 (the Tucannon Hatchery adult trap is located at rkm 59).

			Carcasses Recovered			
Stratum	R km ^a	Number of redds	Natural	Hatchery		
Wilderness	84-86	1	0	0		
	78-84	7	0	2		
	75-78	23	3	13		
HMA	73-75	13	4	5		
	68-73	17	1	10		
	66-68	7	1	8		
	62-66	3	0	3		
	59-62	6	0	1		
	Τι	acannon Fish Hatchery Tra	p			
	56-59	18	0	13		
Hartsock	52-56	1	0	1		
	47-52	9	0	2		
	43-47	0	0	0		
	40-43	3	0	0		
Marengo	34-40	0	0	0		
-	28-34	0	0	0		
Below Marengo	0-28	1	0	0		
Totals	0-86	109	9	58		

^a Rkm descriptions: 86-Rucherts Camp; 84-Sheep Cr.; 78-Lady Bug Flat CG; 75-Panjab Br.; 73-Cow Camp Bridge; 68-Camp Wooten Br.; 66-Curl Lake; 62-Beaver/Watson Lakes Br.; 59-Tucannon Hatchery Intake/Adult Trap; 56-Cummings Creek Br.; 52-Br. 14; 47-Br. 12; 43-Br. 10; 40-Marengo Br.; 34-King Grade Br.; 28-Enrich Br. (Brines Rd.).

Historical Trends in Natural Spawning

Two general spawning trends were evident (Figure 3) from the program's inception in 1985 through 1999:

- 1) The proportion of the total number of redds occurring below the adult trap increased; and
- 2) The density of redds (redds/km) decreased in the Tucannon River.

In part, these two factors were a result of a greater emphasis on broodstock collection in an effort to reduce the risk of extinction. Moving the release location from TFH (rkm 57.7) upstream to Curl Lake AP (rkm 65.6) in 1999 appears to have affected the spawning distribution, with higher numbers of fish and redds in the Wilderness and HMA strata compared to previous years (Table 8). The number of redds above the trap has increased from the mid to late 90s, even during recent years with low numbers of adult returns, due in large part to adult outplanting in the upper watershed.

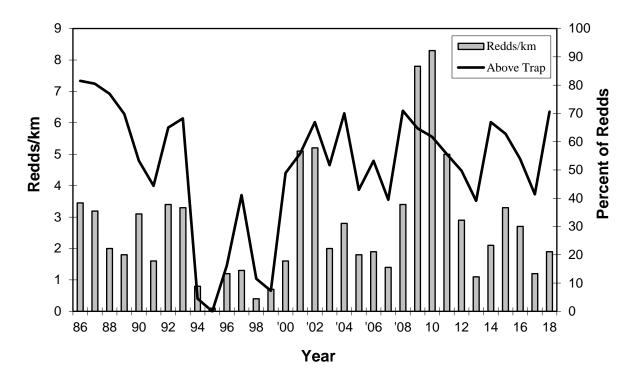


Figure 3. Number of redds/km and percentage of redds above the adult trap on the Tucannon River, 1986-2018.

Table 8. Number of spring Chinook salmon redds and redds/km (in parenthesis) by stratum and year, and the number and percent of redds above and below the TFH adult trap in the Tucannon River, 1985-2018.

	Strata ^a						FH A	lult Tra	$\mathbf{p}^{\mathbf{b}}$
					Total				
	Wilderness	HMA	Hartsock	Marengo	Redds ^b	Above	%	Below	%
1985 ^c	101 (9.2)	165 (8.7)	50 (3.1)	_	316	_	_	_	_
1986	53 (4.5)	117 (6.2)	29 (1.9)	0(0.0)	200	163	81.5	37	18.5
1987	15 (1.3)	140 (7.4)	30 (1.9)	_	185	149	80.5	36	19.5
1988	18 (1.5)	79 (4.2)	20 (1.3)	_	117	90	76.9	27	23.1
1989	29 (2.5)	54 (2.8)	23 (1.5)	_	106	74	69.8	32	30.2
1990	20 (1.7)	94 (4.9)	64 (4.1)	2(0.3)	180	96	53.3	84	46.7
1991	3 (0.3)	67 (2.9)	18 (1.1)	2(0.3)	90	40	44.4	50	55.6
1992	17 (1.4)	151 (7.9)	31 (2.0)	1 (0.2)	200	130	65.0	70	35.0
1993	34 (3.4)	123 (6.5)	34 (2.2)	1 (0.2)	192	131	68.2	61	31.8
1994	1 (0.1)	10 (0.5)	28 (1.8)	5 (0.9)	44	2	4.5	42	95.5
1995	0(0.0)	2 (0.1)	3 (0.2)	0(0.0)	5	0	0.0	5	100.0
1996	1 (0.1)	33 (1.7)	34 (2.2)	1 (0.2)	69	11	16.2	58	83.8
1997	2 (0.2)	43 (2.3)	27 (1.7)	1 (0.2)	73	30	41.1	43	58.9
1998	0(0.0)	3 (0.2)	20 (1.3)	3 (0.5)	26	3	11.5	23	88.5
1999	1 (0.1)	34 (1.8)	6 (0.4)	0(0.0)	41	3	7.3	38	92.7
2000	4 (0.4)	68 (3.6)	20 (1.3)	0(0.0)	92	45	48.9	47	51.1
2001	22 (2.0)	194 (10.2)	80 (5.0)	1 (0.1)	297	166	55.9	131	44.1
2002	29 (2.6)	214 (11.3)	45 (2.8)	11 (0.9)	299	200	66.9	99	33.1
2003	3 (0.3)	89 (4.7)	26 (1.6)	0(0.0)	118	61	51.7	57	48.3
2004	24 (2.2)	119 (6.3)	17 (1.1)	0(0.0)	160	112	70.0	48	30.0
2005	4 (0.4)	71 (3.7)	27 (1.7)	5 (0.4)	107	46	43.0	61	57.0
2006	2 (0.2)	81 (4.3)	17 (1.1)	1 (0.1)	109	58	53.2	51	46.8
2007	2 (0.2)	63 (3.3)	16 (1.0)	0(0.0)	81	32	39.5	49	60.5
2008	30 (2.7)	146 (7.7)	22 (1.4)	1 (0.1)	199	141	70.9	58	29.1
2009	67 (6.1)	329 (17.3)	52 (3.3)	3 (0.3)	451	292	64.7	159	35.3
2010	83 (7.5)	289 (15.2)	106 (6.6)	3 (0.3)	481	297	61.7	184	38.3
2011	35 (3.2)	196 (10.3)	53 (3.3)	6 (0.5)	297	165	55.6	132	44.4
2012	11 (1.0)	132 (6.9)	23 (1.4)	0(0.0)	169	84	49.7	85	50.3
2013	3 (0.3)	42 (2.2)	15 (0.9)	0(0.0)	64	25	39.1	39	60.9
2014	26 (2.4)	70 (3.7)	25 (1.6)	1 (0.1)	124	83	66.9	41	33.1
2015	56 (5.1)	91 (4.8)	33 (2.1)	4 (0.3)	191	120	62.8	71	37.2
2016	37 (3.4)	79 (4.2)	31 (1.9)	3 (0.3)	154	83	53.9	71	46.1
2017	8 (0.7)	47 (2.5)	15 (0.9)	0 (0.0)	70	29	41.4	41	58.6
2018	31 (2.8)	64 (3.4)	13 (0.8)	0(0.0)	109	77	70.6	32	29.4

Note: – indicates the river was not surveyed in that section during that year.

^a Excludes redds found below the Marengo stratum.

^b Includes all redds counted during redd surveys.

^c The 1985 redd counts were revised to account for all redds during the spawning season (WDFW 2017).

Stream Nutrient Enrichment

The majority of hatchery broodstock carcasses have traditionally been buried on-site at LFH after spawning. However, declines in salmonid abundance during the last century have resulted in decreased deposition of marine-derived nutrients and pose a significant restraint in the recovery of threatened and endangered Pacific salmon (Nehlsen et al. 1991; Scheuerell et al. 2005). The importance of marine derived nutrients to salmon recovery efforts has prompted local volunteer groups and state, federal, and tribal agencies to add supplemental nutrients into freshwater habitats, especially in salmon depleted habitats (Kohler et al. 2012). Stream nutrient enrichment efforts in the Tucannon River had been sporadic during the history of the hatchery program. However, since 2016, stream nutrient enrichment has been occurring on an annual basis.

A total of 1,305 Chinook salmon carcasses (primarily fall Chinook) were available for stream nutrient enrichment in the Tucannon River as the result of hatchery spawning at LFH during 2018. Virology testing did not show presence of pathogens, so the WDFW's "Protocols for the Nutrient Enrichment of the Tucannon River to Increase Production of Salmon and Steelhead" were followed and the fall Chinook carcasses, due to their relative abundance, were used as a surrogate for spring Chinook carcasses. Department employees and volunteers from the Tri-State Steelheaders Regional Fisheries Enhancement Group and AmeriCorps volunteers distributed the carcasses between Panjab Bridge (rkm 74.5) and near Highway 12 Bridge (rkm 22.0) from 5 October 2018 and 11-12 January 2019 (Table 9). Carcasses were distributed to benefit both spring Chinook and steelhead based on redd locations and expected downstream movement of juveniles and stream drift of aquatic macroinvertebrates.

Standard tracking of salmon/steelhead production and growth will occur and characteristics of juveniles (numbers, size, weight, condition factor, etc.) captured at the Tucannon River smolt trap will be monitored.

Table 9. Summary of Chinook salmon carcass distribution on the Tucannon River on 5 October 2018 and 11-12 January 2019.

Location Name	River kilometer	Number of Carcasses
Panjab Bridge	74.5	75
Private Lands Campground	73.3	62
Cow Camp Bridge	72.9	64
Across from Camp Wooten	68.4	30
Camp Wooten Bridge	68.1	75
Forest Service Guard Station	66.8	81
Hatchery Intake	59.2	
Hatchery Bridge	58.2	127
Cummings Creek Bridge	55.9	100
Bridge 14	51.5	76
Bridge 13	48.9	50
Bridge 12	47.1	50
Bridge 11	44.0	50
Bridge 10	43.3	50
Bridge 9	42.0	83
Marengo Bridge	39.9	107
King Grade Bridge	34.1	75
Brines Rd./Enrich Bridge	28.0	75
Near Highway 12 Bridge	22.0	75
Totals		1,305

Genetic Sampling

During 2018, we collected 192 DNA samples (tissue samples) from hatchery broodstock and carcasses collected from the spawning grounds (42 natural origin, 134 hatchery supplementation, and 16 hatchery origin strays). These samples were sent to the WDFW genetics lab in Olympia, Washington for storage. Genetic samples from the broodstock were also collected and sent to the Idaho Department of Fish and Game for parentage-based tagging analysis. Genotypes, allele frequencies, and tissue samples from previous sampling years are available from WDFW's Genetics Laboratory.

Age Composition, Length Comparisons, and Fecundity

We determine the age composition of each year's returning adults from scale samples of natural origin fish, and both scales and CWTs from hatchery-origin fish collected for broodstock and

from carcasses collected during spawning ground surveys. This enables us to compare ages of natural and hatchery-reared fish, and to examine trends and variability in age structure. The recovery of jack salmon from the river is low and jacks are typically not collected for broodstock so their representation is biased low compared to observations from the adult trap.

Overall, hatchery origin fish return at a younger age than natural origin fish and have fewer age-5 fish in the population (Figure 4). This difference is likely due to larger size-at-release that can lead to higher proportions of early maturating fish (hatchery origin smolts are generally 40-50 mm greater in length than natural smolts). The age composition for both hatchery and natural origin fish that returned in 2018 had fewer age-3 and 5 fish compared to the historical age composition (Figure 4). This is likely the result of poor ocean conditions during the past few years. We have not seen significant change in the mean age (weighted) of males and females over 28 brood years (Figure 5). The age composition by brood year for natural and hatchery origin fish is found in Appendix C.

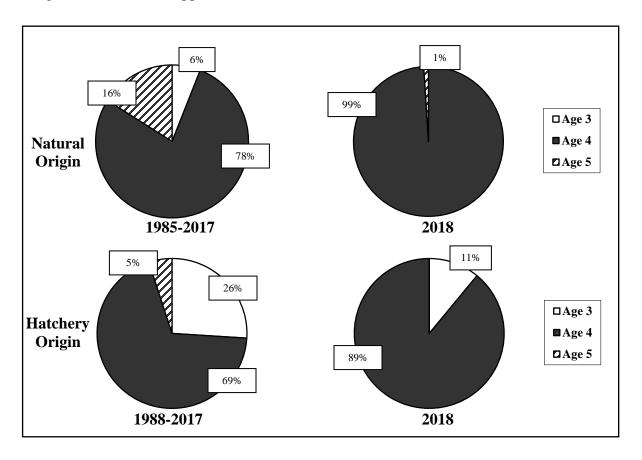


Figure 4. Historical (1985-2017), and 2018 age composition (run year) for spring Chinook in the Tucannon River.

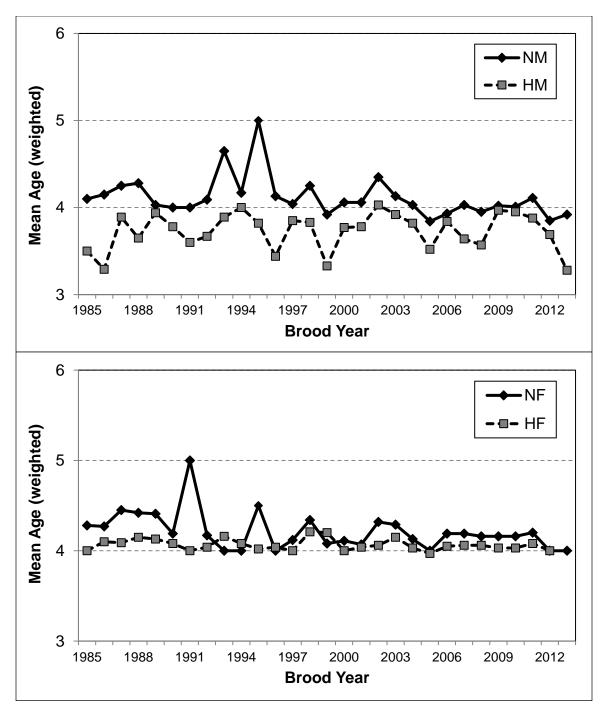


Figure 5. Weighted mean age of natural and hatchery origin males (NM, HM) and natural and hatchery origin females (NF, HF) for the 1985 to 2013 brood years for spring Chinook in the Tucannon River.

Another metric monitored on returning adult natural and hatchery origin fish is size at age, measured as the mean post-orbital to hypural-plate (POH) length. We examined size at age for age-4 adult returns using multiple comparison analysis from 1985-2018 and found a significant difference (P < 0.001) in mean POH length between age-4 natural and hatchery-origin female, and age-4 natural and hatchery-origin male spring Chinook salmon (Figure 6).

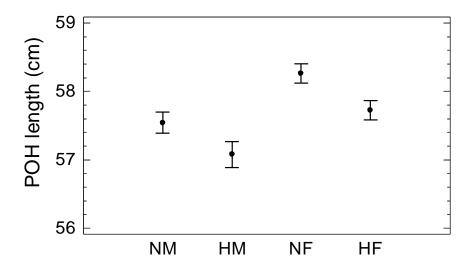


Figure 6. Mean post-orbital to hypural-plate (POH) length comparisons between age-4 natural and hatchery-origin males (NM and HM) and natural and hatchery-origin females (NF and HF) with 95% confidence intervals for the years 1985-2018.

To estimate fecundities (number of eggs/female) from the 2018 return year, dead eggs were counted for each female and a subsample of 100 live eyed-eggs was weighed. The total mass of live eggs was also weighed, and divided by the average weight per egg to yield total number of live eggs. This estimate was decreased by 4% to compensate for adherence of water on the eggs (WDFW Snake River Lab, unpublished data). Fecundities of natural and hatchery origin fish from the Tucannon River program have been documented since 1990 (Table 10). We performed an analysis of variance to determine if there were differences in mean fecundities of hatchery and natural origin fish. The significance level for all statistical tests was 0.05. Natural origin females were significantly more fecund than hatchery origin fish for both age-4 (P < 0.001) and age-5 fish (P < 0.001).

These data correspond with data collected by Gallinat and Chang (2013) that examined the effects of hatchery rearing on selected phenotypic traits of female Tucannon River spring Chinook salmon. They found that hatchery origin females had significantly lower fecundity than natural origin fish after correcting for body size. They also observed that the progeny of captive-reared broodstock, released as smolts and recaptured as returning age-4 adults, had a size and

fecundity distribution that was similar to the hatchery-origin adults, suggesting that the decrease in fecundity was related to hatchery rearing and not a genetically linked trait.

Table 10. Average number of eggs/female (n, SD) by age group of Tucannon River natural and hatchery origin broodstock, 1990-2018 (partial spawned females are excluded).

	Age 4				Age 5			
Year	N	latural	На	atchery	N	latural	Н	atchery
1990	3,691	(13, 577.3)	2,795	(18, 708.0)	4,383	(8, 772.4)	No	Fish
1991	3,140	(5, 363.3)	2,649	(9, 600.8)	4,252	(11, 776.0)	3,052	(1,000.0)
1992	3,736	(16, 588.3)	3,286	(25, 645.1)	4,800	(2,992.8)	3,545	(1,000.0)
1993	3,267	(4,457.9)	3,456	(5, 615.4)	4,470	(2, 831.6)	4,129	(1,000.0)
1994	3,688	(13, 733.9)	3,280	(11, 630.3)	4,848	(8,945.8)	3,352	(10, 705.9)
1995	No	Fish	3,584	(14, 766.4)	5,284	(6, 1, 361.2)	3,889	(1,000.0)
1996	3,510	(17, 534.3)	2,853	(18, 502.3)	3,617	(1,000.0)	No	Fish
1997	3,487	(15, 443.1)	3,290	(24, 923.2)	4,326	(3, 290.8)	No	Fish
1998	4,204	(1,000.0)	2,779	(7,405.5)	4,017	(28, 680.5)	3,333	(6,585.2)
1999	No	Fish	3,121	(34, 445.4)	No	Fish	3,850	(1,000.0)
2000	4,144	(2, 1,571.2)	3,320	(34, 553.6)	3,618	(1,000.0)	4,208	(1,000.0)
2001	3,612	(27, 518.1)	3,225	(24, 705.4)	No	Fish	3,585	(2, 1, 191.5)
2002	3,584	(14, 740.7)	3,368	(24, 563.7)	4,774	(7, 429.1)	No	Fish
2003	3,342	(10, 778.0)	2,723	(2, 151.3)	4,428	(7,966.3)	3,984	(17, 795.9)
2004	3,376	(26, 700.5)	2,628	(17, 397.8)	5,191	(1,000.0)	2,151	(1,000.0)
2005	3,399	(18, 545.9)	2,903	(22, 654.2)	4,734	(7, 1,025.0)		Fish
2006	2,857	(17, 559.1)	2,590	(26, 589.8)	3,397	(1,000.0)	4,319	(1,000.0)
2007	3,450	(14, 721.1)	2,679	(6, 422.7)	4,310	(12, 1, 158.0)	3,440	(2,997.7)
2008	3,698	(16, 618.9)	3,018	(40, 501.3)	4,285	(1,000.0)	4,430	(1,000.0)
2009	3,469	(34, 628.9)	3,267	(52, 641.3)	4,601	(6,753.6)		Fish
2010	3,579	(38, 594.8)	3,195	(44, 640.9)		Fish		Fish
2011	3,513	(18, 613.0)	3,061	(30, 615.1)	4,709	(27, 755.2)	3,954	(11, 731.3)
2012	2,998	(40, 618.1)	2,539	(45, 462.5)	4,371	(5,478.0)	3,105	(2, 356.4)
2013	3,479	(34, 574.8)	3,145	(28, 592.9)	4,702	(12, 931.5)	3,746	(2, 185.3)
2014	3,622	(34, 501.3)	3,280	(26, 545.6)	4,575	(3, 807.3)	3,558	(1,000.0)
2015	3,683	(47, 629.5)	3,468	(20, 671.8)	4,755	(8, 818.0)		Fish
2016	3,456	(19, 676.1)	3,133	(36, 652.7)	4,096	(12, 891.2)	3,514	(5,508.6)
2017	3,393	(8, 453.9)	3,034	(50, 586.0)		Fish		Fish
2018	2,977	(9, 573.1)	2,860	(64, 522.2)	No	Fish	No	Fish
Mean		3,470		3,062		4,467		3,689
SD		636.3	(641.0		860.2		725.2

Arrival and Spawn Timing Trends

We monitor peak arrival and spawn timing to determine whether the hatchery program has caused a shift (Table 11). Peak arrival dates were based on the greatest number of fish trapped on a single day. Peak spawn in the hatchery was determined by the day when the most females were spawned. Peak spawning in the river was determined by the highest weekly redd count.

Peak arrival to the TFH adult trap was slightly later than normal for hatchery origin fish during 2018, but was within the historical range (Table 11). Peak spawning date in the hatchery was 11 September for both hatchery and natural origin fish, and was close to the historical mean (Table 11). The duration of spawning in the hatchery (22 days) was also close to the historical mean. Spawning in the river peaked on 12 September. The duration of active spawning in the Tucannon River (42 days) was within the range found from previous years.

Natural origin fish typically arrive earlier and at a slightly faster rate than hatchery origin fish (Figure 7). On average, about half of the total run of hatchery origin fish typically arrives at the adult trap by 12 June (Figure 7). After the end of June, the hatchery fish tend to arrive at the adult trap at a slightly faster rate than natural origin fish.

Table 11. Peak dates of arrival of natural and hatchery salmon to the TFH adult trap and peak (date) and duration (number of days) for spawning in the hatchery and river, 1986-2018.

	Peak Arrival at Trap		Spaw	Spawning in Hatchery			Spawning in River	
Year	Natural	Hatchery	Natural	Hatchery	Duration	Combined	Duration	
1986	5/27	_	9/17	_	31	9/16	36	
1987	5/15	_	9/15	_	29	9/23	35	
1988	5/24	_	9/07	_	22	9/17	35	
1989	6/06	6/12	9/15	9/12	29	9/13	36	
1990	5/22	5/23	9/04	9/11	36	9/12	42	
1991	6/11	6/04	9/10	9/10	29	9/18	35	
1992	5/18	5/21	9/15	9/08	28	9/09	44	
1993	5/31	5/27	9/13	9/07	30	9/08	52	
1994	5/25	5/27	9/13	9/13	22	9/15	29	
1995 ^a	_	6/08	9/13	9/13	30	9/12	21	
1996	6/06	6/20	9/17	9/10	21	9/18	35	
1997	6/15	6/17	9/09	9/16	30	9/17	50	
1998	6/03	6/16	9/08	9/16	36	9/17	16	
1999 ^a	_	6/16	9/07	9/14	22	9/16	23	
2000	6/06	5/22	_	9/05	22	9/13	30	
2001	5/23	5/23	9/11	9/04	20	9/12	35	
2002	5/29	5/29	9/10	9/03	22	9/11	42	
2003	5/25	5/25	9/09	9/02	36	9/12	37	
2004	6/04	6/02	9/14	9/07	29	9/08	30	
2005	6/01	5/31	9/06	9/06	28	9/14	28	
2006	6/12	6/09	9/12	9/12	28	9/08	^b	
2007	6/04	6/04	9/18	9/04	22	9/12	30	
2008	6/16	6/20	9/09	9/16	21	9/11	34	
2009	6/01	6/15	9/15	9/08	29	9/10	37	
2010	6/04	6/03	9/14	9/08	14 ^c	9/10	33	
2011	6/08	6/23	9/06	9/06	22	9/16	33	
2012	5/30	6/02	9/11	9/18	22	9/12	36	
2013	6/06	6/06	9/10	9/10	29	9/11	42	
2014	5/27	6/04	9/09	9/09	22^{c}	9/11	35	
2015	5/18	5/20	9/15	9/08	29	9/09	44	
2016	5/19	6/06	9/13	9/06	22	9/07	36	
2017	6/06	6/18	9/12	9/12	29	9/11	26	
Mean	6/01	6/05	9/12	9/10	26	9/13	35	
2018	5/29	6/15	9/11	9/11	22	9/12	42	

^a Too few natural salmon were trapped in 1995 and 1999 to determine peak arrival.

^b Access restrictions during the Columbia Complex Forest Fire prohibited spawning ground surveys during the beginning of spawning.

^c Unspawned females determined to be in excess of eggtake goals were returned to the river for natural spawning which may have truncated duration of spawning in the hatchery.

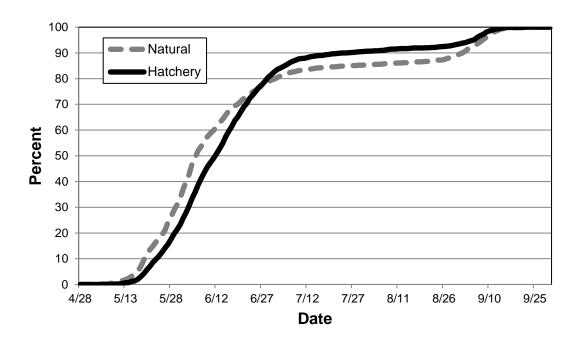


Figure 7. Cumulative run timing by date at the Tucannon Fish Hatchery adult trap on the Tucannon River for both natural and hatchery origin Tucannon River spring Chinook salmon, 1994-2018.

Total Run-Size

Redd counts have a strong direct relationship to total run-size entering the Tucannon River and passage of adult salmon at the TFH trap (Bugert et al. 1991). Numbers of fish passed upstream of the adult trap were adjusted to account for fish that were able to bypass the trap during the time it was in operation. We calculated separate bypass rates for both jacks and adults since their ability to bypass the trap has historically been different. Based on the presence or absence of left operculum punches from fish recovered during spawning ground surveys, we calculated the number of jacks and adults that bypassed the adult trap by solving for the following equation:

Number of fish⁴ that = $\underline{\text{Number of carcasses without operculum punches x Fish passed above trap}$ bypassed adult trap

Number of carcasses with operculum punches

Based on 2018 spawning ground carcass operculum punch recoveries, one jack and 48 adults were able to bypass the adult trap. We added the calculated number of fish that bypassed the trap (1 jack, 48 adults) to the number of fish that were passed upstream by hatchery staff (5 jacks, 13 adults), and adult outplants (65 jacks, 138 adults) for a total of 270 fish above the trap. The use of adult outplants confounded our typical calculation of the number of fish below the

Tucannon River Spring Chinook Salmon Hatchery Evaluation Program 2018 Annual Report

⁴ This formula was used to separately calculate for jacks and adults bypassing the adult trap. The word "fish" is used as a generic term referring to either adults or jacks.

adult trap since their survival was higher than fish that were passed upstream. The number of fish below the trap was calculated by the number of redds below the trap (32), multiplied by the fish/redd based on the sex ratio of the pre-spawning population that was collected at the adult trap (2.02). Therefore, the estimated number of fish below the trap was 65.

The run-size estimate for 2018 was calculated by adding the estimated number of fish upstream of the TFH adult trap (270), the estimated fish below the weir (65), adipose clipped strays killed at the trap (38), pre-spawn mortality of fish held for adult outplanting (12), and the number of broodstock collected (160) (Table 12). Run-size for 2018 was estimated to be 545 fish (80 natural adults, 0 natural jacks, and 425 hatchery adults, 40 hatchery-origin jacks). Historical breakdowns are provided in Appendix D.

Table 12. Estimated spring Chinook salmon run to the Tucannon River and recovered pre-spawn mortalities (PSM), 1985-2018.

Yeara	Total Redds	Fish/Redd Ratio ^b	Potential Spawners	Broodstock Collected	Trap/Holding Mortalities ^c	Total Run-Size	River PSM ^d	Percent Natural
1985 ^e	316	2.60	822	22	0	844	0	100
1986	200	2.60	520	116	0	636	0	100
1987	185	2.60	481	101	0	582	0	100
1988	117	2.60	304	125	0	429	0	96
1989	106	2.60	276	169	0	445	0	76
1990	180	3.39	610	135	1	746	7	66
1991	90	4.33	390	130	0	520	8	50
1992	200	2.82	564	97	11	672	81	58
1993	192	2.27	436	97	0	533	56	57
1994	44	1.59	70	70	0	140	0	70
1995	5	2.20	11	43	0	54	0	39
1996	69	2.00	138	80	5	223	29	64
1997	73	2.00	146	97	0	243	108	50
1998	26	1.94	51	89	0	140	4	61
1999	41	2.60	107	136	1	244	1	1
2000	92	2.60	239	81	17	337	2	24
2001	297	3.00	891	106	0	997	12	71
2002	299	3.00	897	107	0	1,004	1	35
2003	118	3.10	366	77	0	443	1	56
2004	160	3.00	480	92	0	572	1	70
2005	107	3.10	332	100	3	435	0	69
2006	109	1.60	174	89	3	266	0	57
2007	81	3.10	250	88	6	344	0	58
2008	199	4.10	1,056	134	1	1,191	0	45
2009	451	3.70	1,676	177	7	1,860	2	40
2010	481	4.87	2,341	173	9	2,523	2	57
2011	297	3.79	1,128	166	6	1,300	0	58
2012	169	6.30	1,059	170	6	1,235	4	66
2013	64	14.96	955	158	2	1,115	2	67
2014	124	7.70	959	127	0	1,086	18	83
2015	191	$6.10^{\rm f}$	1,604	131	42	1,777	28	41
2016	154	$3.87^{\rm f}$	478	126	148	752	6	30
2017	70	3.55	249	111	152	512	1	13
2018	109	2.02^{f}	335	160	50 n 1996 and 1997, hig	545	0	15

^a In 1994, 1995, 1998 and 1999, fish were not passed upstream, and in 1996 and 1997, high pre-spawning mortality occurred in fish passed above the trap, therefore; fish/redd ratio was based on the sex ratio of broodstock collected.

b From 1985-1989 the TFH trap was temporary, thereby underestimating total fish passed upstream of the trap. The 1985-1989 fish/redd ratios were calculated from the 1990-1993 average, excluding 1991 because of a large jack run.

^c This total includes stray fish that are killed at the trap and pre-spawn mortalities of fish held at LFH for adult outplanting. During 2016, jacks were killed outright at the adult trap and are included in this total. During 2017, jacks were killed at LFH.

d Effort in looking for pre-spawn mortalities has varied from year to year with more effort expended during years with poor conditions or large runs.

^e The 1985 redd counts were revised on the SASI database to account for all redds during the spawning season (WDFW 2017).

f The fish/redd ratio was not used to estimate the number of fish below the adult trap due to survival differences between outplanted fish and fish that were passed upstream.

Spawning Escapement

To calculate spawning escapement, we assume one redd per female (Murdoch et al. 2009) and multiply the number of redds by the sex ratio (1.02 males: 1 female = 2.02 fish/redd) of the prespawning population that was collected at the adult trap (i.e., no carcass collection bias issues). This should provide a more accurate expansion method than simply applying a constant value based on assumptions, or data from other studies, since it incorporates the natural variability that occurs in most populations (Murdoch et al. 2010). Because spawner distribution of hatchery and natural origin fish may be different, we expanded the natural and hatchery fish by reach [Wilderness, HMA (above trap), HMA (below trap), Hartsock, Marengo, and below Marengo] based on carcass recoveries. The total for all reaches equals the spawning escapement.

Sex ratio from the adult trap was only available from 2000 to present. For 1985 to 1999, we used corrected carcass data based on the methodology of Murdoch et al. (2010). For years when the corrected carcass data produced clear outliers, or produced spawning escapements greater than the run escapement, we used data cited by Meekin (1967) that cited an average of 2.20 adults/redd and proportionately adjusted that figure up during years with high jack returns. The spawning escapement for 2018 was 220 fish (29 natural-origin, 191 hatchery-origin) based on 2.02 fish per redd. The estimated spawning escapement for 1985 to 2018 is found in Table 13.

Table~13.~Estimated~spawning~escapement~and~the~calculation~methodology~used~for~the~1985~to~2018~run~years.

Run	Number	Spawning	Natural:Hatchery		
Year	of Redds	Escapement	Ratio	Fish/Redd	Methodology
1985 ^a	316	695	1.000:0.000	2.20	Meekin (1967)
1986	200	440	1.000:0.000	2.20	Meekin (1967)
1987	185	407	1.000:0.000	2.20	Meekin (1967)
1988	117	257	1.000:0.000	2.20	Meekin (1967)
1989	106	276	0.988:0.012	2.60	Meekin (1967)
1990	180	572	0.785:0.215	3.18	Corrected Carcasses
1991	90	291	0.677:0.323	3.23	Corrected Carcasses
1992	200	476	0.641:0.359	2.38	Corrected Carcasses
1993	192	397	0.617:0.383	2.07	Corrected Carcasses
1994	44	97	1.000:0.000	2.20	Meekin (1967)
1995	5	27	1.000:0.000	5.30	Corrected Carcasses
1996	69	152	0.767:0.233	2.20	Meekin (1967)
1997	73	105	0.644:0.356	1.44	Corrected Carcasses
1998	26	60	0.739:0.261	2.30	Meekin (1967)
1999	41	160	0.023:0.977	3.91	Corrected Carcasses
2000	92	201	0.307:0.693	2.18	Sex ratio at Adult Trap
2001	297	766	0.801:0.199	2.58	Sex ratio at Adult Trap
2002	299	568	0.395:0.605	1.90	Sex ratio at Adult Trap
2003	118	329	0.742:0.258	2.79	Sex ratio at Adult Trap
2004	160	346	0.826:0.174	2.16	Sex ratio at Adult Trap
2005	107	264	0.804:0.196	2.47	Sex ratio at Adult Trap
2006	109	202	0.759:0.241	1.85	Sex ratio at Adult Trap
2007	81	211	0.776:0.224	2.60	Sex ratio at Adult Trap
2008	199	796	0.610:0.390	4.00	Sex ratio at Adult Trap
2009	451	1191	0.507:0.493	2.64	Sex ratio at Adult Trap
2010	481	938	0.578:0.422	1.95	Sex ratio at Adult Trap
2011	297	849	0.703:0.297	2.86	Sex ratio at Adult Trap
2012	169	335	0.698:0.302	1.98	Sex ratio at Adult Trap
2013	64	170	0.697:0.303	2.66	Sex ratio at Adult Trap
2014	124	294	0.726:0.274	2.37	Sex ratio at Adult Trap
2015	191	523	0.330:0.670	2.74	Sex ratio at Adult Trap
2016	154	340	0.336:0.664	2.21	Sex ratio at Adult Trap
2017	70	249	0.195:0.805	3.55	Sex ratio at Adult Trap
2018	109	220	0.134:0.866	2.02	Sex ratio at Adult Trap

^a The 1985 redd counts were revised on the SASI database to account for all redds during the spawning season (WDFW 2017).

Coded-Wire Tag Sampling

Broodstock collection, pre-spawn mortalities, and carcasses recovered during spawning ground surveys provide representatives of the annual run that can be sampled for CWT study groups (Table 14). In 2018, based on the estimated escapement of hatchery and natural origin fish to the river, we sampled approximately 51% of the run (Table 15).

Table 14. Coded-wire tag codes of hatchery salmon sampled at LFH and the Tucannon River, 2018.

	Brood	dstock Colle	cted	Held a	t LFH	Recove	red in Tucanr	on River	
CWT	Pre-spawn	Killed		Killed	Died in	Dead in	Pre-spawn		
Code	Mortality	Outright	Spawned	Outright	Pond	Trap ^a	Mortality	Spawned	Totals
63-70-39					1			7	8
63-68-84	14	2	104		11			34	165
Lost			1						1
-Strays- 09-09-03						2			2
09-09-10						1		2	3
09-09-18	2							3	5
AD/No Wire						35		12	47
Totals	16	2	105	0	12	38	0	58	231

^a Adipose clipped strays are killed outright at the trap.

Table 15. Spring Chinook salmon (natural and hatchery) sampled from the Tucannon River, 2018.

		2018	
	Natural	Hatchery	Total
Total escapement to river	80	465	545
Broodstock collected	37	123	160
Fish dead in adult trap	0	38	38
Fish held at LFH	0	12	12
Total hatchery sample	37	173	210
Total fish left in river	43	292	335
In-river pre-spawn mortalities observed	0	0	0
Spawned carcasses recovered	9	58	67
Total river sample	9	58	67
Carcasses sampled	46	231	277

Stray Salmon into the Tucannon River

Spring Chinook from other river systems (strays) are periodically recovered in the Tucannon River, although they were generally at a low proportion of the total run (Bumgarner et al. 2000). However, Umatilla River hatchery strays accounted for 8 and 12% of the total Tucannon River run in 1999 and 2000, respectively (Gallinat et al. 2001). Increased strays, particularly from the Umatilla River, was a concern since it exceeded the 5% stray proportion of hatchery fish deemed acceptable by NOAA Fisheries, and was contrary to fish management intent for the Tucannon River. In addition, the Oregon Department of Fish and Wildlife (ODFW) and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) did not mark a portion of Umatilla River origin spring Chinook with an RV or LV fin clip (65-70% of releases), or CWT for the 1997-1999 brood years. Because of that action, some stray fish that returned from those brood years were physically indistinguishable from natural origin Tucannon River spring Chinook. Scale samples were collected from adults in those brood years to determine hatchery-origin fish based on scale pattern analysis. However, we are unable to differentiate between unmarked Tucannon fish and unmarked strays based on scale patterns. Beginning with the 2000 BY, Umatilla River hatchery-origin spring Chinook were 100% marked (adipose clipped), however, the implementation of a "stepping stone" hatchery management protocol for the Umatilla Hatchery Program has resulted in a portion of Umatilla Hatchery releases being unclipped (but 100% CWT) beginning with the 2009 BY. Unfortunately, because of that mark/tag, they are identical to Tucannon fish. As such, this hinders our ability to selectively remove stray hatchery fish during broodstock collection, or from fish passed upstream at the TFH adult trap. We will continue to monitor the Tucannon River and emphasize the need for external marks and CWTs for Umatilla River releases.

Fifty-seven strays (10 Umatilla River, 47 AD clip/no wire) were recovered during 2018 (Appendix E). Thirty-eight strays were killed outright at the trap (two CWT 090903, one CWT 090910 and 35 AD clip/no wire), 17 were recovered during spawning ground surveys (two CWT 090910, three CWT 090918, and 12 AD clip/no wire), and two were inadvertently collected for broodstock (CWT 090918). After expansions, strays accounted for an estimated 20.2% of the total 2018 run (Appendix E). This rate exceeds the 5% hatchery stray rate deemed acceptable by NOAA.

An added concern for the future is the implementation of a new hatchery program for the Touchet River using Carson stock spring Chinook. Potential straying from this hatchery program into the Tucannon River would be additive to the current stray rates being observed in the Tucannon River and could lead to outbreeding depression. All juveniles from the new Touchet River spring Chinook program will be 100% AD-clipped, with 34% of the production receiving CWT and 6% receiving PIT tags to monitor potential straying into the Tucannon River.

The increased use of passive integrated transponder (PIT) tags by fish and wildlife agencies and the utilization of in-stream PIT tag arrays in the Tucannon River have permitted us to identify the origin of some spring Chinook PIT tagged from other locations during 2018. Fourteen fish originally PIT tagged at locations other than the Tucannon River were detected in the Tucannon River (Table 16). The majority of these fish (13) were of unknown origin that were tagged as adults at Lower Granite Dam and eventually returned back downstream and entered the Tucannon River (Table 16). These fish could be Tucannon origin fish that overshot the river and returned back, however their actual origin is unknown. One stray (Cle Elum Hatchery, Easton Acclimation Pond, Yakama Nation) originally PIT tagged as a juvenile (2015 BY) was also detected in the Tucannon (Table 16).

Table 16. Tucannon River PIT tag array detections of spring Chinook originally tagged at locations other than the Tucannon River during 2018.

		Tag	Life Stage	Tag	Detection	Tucannon
PIT Tag	Origin	Date	At Tagging	Release Location	Date	Sitea
3DD.00776614D6	Н	3/14/17	Juvenile	Cle Elum Hatchery	7/21/18	MTR
3DD.00775E6F24	Н	5/31/18	Adult	Lower Granite Dam	6/20/18	UTR
3DD.00775E8C6B	Н	6/12/18	Adult	Lower Granite Dam	8/28/18	TFH
3DD.00775EB0A0	W	6/08/18	Adult	Lower Granite Dam	7/07/18	TFH
3DD.00775F5135	Н	5/29/18	Adult	Lower Granite Dam	6/14/18	TFH
3DD.00775FED7A	W	6/04/18	Adult	Lower Granite Dam	6/20/18	TFH
3DD.00775FF831	Н	5/29/18	Adult	Lower Granite Dam	6/19/18	TFH
3DD.0077ADE47C	Н	5/17/18	Adult	Lower Granite Dam	6/09/18	TFH
3DD.0077B601FF	W	5/17/18	Adult	Lower Granite Dam	6/19/18	TFH
3DD.0077B744B7	Н	5/22/18	Adult	Lower Granite Dam	6/06/18	TFH
3DD.0077B8765A	W	5/24/18	Adult	Lower Granite Dam	6/14/18	TFH
3DD.0077B8B2F3	Н	5/22/18	Adult	Lower Granite Dam	6/15/18	TFH
3DD.0077B8C14A	Н	5/25/18	Adult	Lower Granite Dam	6/11/18	TFH
3DD.0077B8D827	Н	5/25/18	Adult	Lower Granite Dam	6/06/18	MTR

^a PIT tag array locations are as follows: LTR – Lower Tucannon River (rkm 2.2), MTR – Middle Tucannon River (rkm 17.8), UTR – Upper Tucannon River (rkm 44.4), TFH – Tucannon Fish Hatchery (rkm 59.2).

Adult PIT Tag Returns

Five hundred sixty-eight Tucannon River spring Chinook originally PIT tagged as juveniles have been detected returning to the Columbia River System (Table 17).

Table 17. Number of Tucannon River spring Chinook juvenile fish PIT tagged by origin and calendar year and adult returns detected (%) in the Columbia River System by origin.

Tag	PIT Tagged	PIT Tagged	PIT Tagged	Detected H	Detected N	Detected CB
Year	Hatchery	Natural	Captive Brood	Adult Returns	Adult Returns	Adult Returns
1995	1,292			1 (0.08%)		
1996	1,923			0		
1997	1,984			2 (0.10%)		
1998	1,999			0		
1999	335	374		2 (0.60%)	5 (1.34%)	
2000						
2001	301	158		0	0	
2002	318	321		1 (0.31%)	3 (0.93%)	
2003	1,010		1,007	3 (0.30%)		0
2004	1,012		1,029	0		0
2005	993	93	993	0	1 (1.08%)	0
2006	1,001	70	1,002	1 (0.10%)	1 (1.43%)	0
2007	1,308	504	1,000	3 (0.23%)	10 (1.98%)	4 (0.40%)
2008	4,989	1,915	997	47 (0.94%)	47 (2.45%)	6 (0.60%)
2009	4,987	1,232		13 (0.26%)	17 (1.38%)	
2010	15,000	2,800		85 (0.57%)	17 (0.61%)	
2011	24,976	5,267		38 (0.15%)	23 (0.44%)	
2012	22,982	3,889		26 (0.11%)	22 (0.57%)	
2013	14,987	4,026		32 (0.21%)	41 (1.02%)	
2014	14,969	660		35 (0.23%)	0	
2015	14,962	368		25 (0.17%)	1 (0.27%)	
2016	14,983	1,429		49 (0.33%)	4 (0.28%)	
2017	14,984	870		3 (0.02%)	0	
Totals	161,295	23,976	6,028	366 (0.23%)	192 (0.80%)	10 (0.17%)

From the detected returns, 138 (24%) of the returning PIT tagged spring Chinook were detected upstream of the Tucannon River (Table 17; Appendix F). Forty-one of these fish (7%) had their last detections at or above Lower Granite Dam (Table 18; Appendix F). The overshoot rate has decreased over time and it is unknown whether this is related to changes in smolt release methods (from direct release to acclimation ponds with volitional release), changes in hydropower operations and river flows, changes in the proportion barged downstream, increases in tagging numbers/sample size, or greater detection capabilities in the Tucannon River (Table 18). This does not appear to be a hatchery effect as both natural and hatchery origin fish

overshoot the Tucannon River (Table 18). Non-direct homing behavior has been documented for adult Chinook in the Columbia River System (Keefer et al. 2008), and similar percentages of natural origin spring Chinook from the John Day River have been documented bypassing that river (Jim Ruzycki, ODFW, personal communication). However, more research into these events should be conducted to examine whether they are natural straying occurrences, or if it is related to hydropower operations. The installation of PIT tag arrays in the Tucannon River during the past few years [Lower Tucannon River (LTR) at rkm 2.2 - 2005, Middle Tucannon River (MTR) at rkm 17.8 and Upper Tucannon River (UTR) at rkm 44.4 - 2011, and Tucannon Fish Hatchery (TFH) at rkm 59.2 – 2012] have enabled us to document that the majority of the Tucannon spring Chinook that overshoot are able to make it back (about 70%) to the Tucannon River (Table 18). Returning spring Chinook overshooting the Tucannon River continues to be a concern, especially if they are unable to return to the Tucannon River, or if they return in a more compromised state (i.e., injuries from additional dam crossings), and may partially explain why this population has been slow to respond to recovery and supplementation actions.

Table 18. Number and origin of PIT tagged Tucannon River spring Chinook returns that overshoot the Tucannon River (includes fish that were last detected returning back downstream towards the Tucannon River) and also detected at Lower Granite Dam (LGR) that stayed above LGR Dam. Years with installed instream PIT tag arrays (2005 - 2017) are included for comparison.

	# Adult	Initial #	Initial						
Tag	Detections	Adults Above	Overshoot	Percent	Percent	# Adults	Percent	Percent	Overshoot
Years	Bonneville	Tucannon R.	Rate	Natural	Hatchery	Above LGR	Natural	Hatchery	Rate (%)
1995-1999	10	8	80.0	37.5	62.5	8	37.5	62.5	80.0
2000-2004	7	2	28.6	50.0	50.0	2	50.0	50.0	28.6
2005-2009	150	20	13.3	35.0	65.0	14	42.9	57.1	9.3
2010-2014	319	80	25.1	37.5	62.5	12	41.7	58.3	3.8
2015-2017	82	28	34.1	3.6	96.4	5	0.0	100.0	6.1
Totals	568	138	24.3%	30.4%	69.6%	41	36.6%	63.4%	7.2%
2005-2017	551	128	23.2%			31			5.6%

Juvenile Salmon Evaluation

Hatchery Rearing, Marking, and Release

The 2017 BY were treated twice with Aquamycin-100[®] for two separate mortality events associated with BKD. They were treated initially as fry beginning shortly after diagnosis on 26 February 2018 and again on 18 June 2018. Supplementation juveniles (154,939) were tagged with CWT (63/73/96) at LFH from 26 June to 3 July 2018. Approximately 98,557 spring Chinook were transported to TFH from Lyons Ferry on 8 November 20178. An additional 54,786 fish were transferred on 4 December 2018. Fish were PIT tagged (target 15,000) for outmigration survival (Comparative Survival Study) and adult return estimates on 12 December 2018. The target release size was 38 g fish (12 fpp).

Brood year 2017 fish were sampled twice by WDFW evaluations staff during the rearing cycle (Table 19). During February, 1,895 fish were sampled for precocity (external observation only) and mark/tag quality and 280 were sampled for length and weight statistics. The 2017 BY fish were transferred to Curl Lake AP on 5 February 2019 for acclimation and volitional release. Length, weight, and precocity samples were repeated in April at Curl Lake AP prior to release (Table 19).

Table 19. Sample size (N), mean length (mm), coefficient of variation (CV), condition factor (K), mean weight (g), and precocity of 2017 BY juveniles sampled at TFH, and Curl Lake AP.

	Sample		Mean			Mean	%
Date	Location	N	Length (mm)	\mathbf{CV}	K	Wt. (g)	Precocity
2/04/19	TFH	280	125.1	13.1	1.26	25.7	1.16
4/02/19	Curl Lake	279	130.6	14.1	1.26	29.9	1.43

A large number of spring Chinook mortalities were observed at Curl Lake AP during volitional release. These mortalities may have been due to BKD. Mortalities were scanned for PIT tags and a total of 772 PIT tagged mortalities were counted. Since the number of fish that were originally PIT tagged (14,991) and the number of fish originally transferred to Curl Lake AP (152,049) were known, we used the proportion of PIT tagged fish to estimate the release number instead of using a 1% mortality rate as stated in the Annual Operation Plan. Volitional release began 4 April and continued until 3 May when the remaining fish were forced out. Estimated numbers and size of fish released are provided in Table 20. Historical release numbers are found in Appendix G.

Table 20. Preliminary spring Chinook salmon releases into the Tucannon River, 2019 release year.

Release	CWT	Total	Number	VIE	VIE Size	
Date	Code	Released	CWT	Mark	Total (kg)	Mean (g)
4/04-5/03	63/73/96	144,219	140,262	None	4,308	29.9

Smolt Trapping

Evaluation staff operated a 1.5 m rotary screw trap at rkm 3 on the Tucannon River from 16 October 2017 through 6 July 2018 to estimate numbers of migrating juvenile natural spring Chinook. Numbers of each fish species captured by month during the 2018 outmigration can be found in Appendix H. The main outmigration of natural origin spring Chinook for the 2017/2018 outmigration occurred during the spring, with a limited outmigration during the fall and winter months (Figure 8). Prior years have shown increased outmigration in the fall and winter from larger adult returns (Gallinat and Ross 2014, Gallinat and Ross 2015), although even in those years, the majority of the outmigration occurred in the spring.

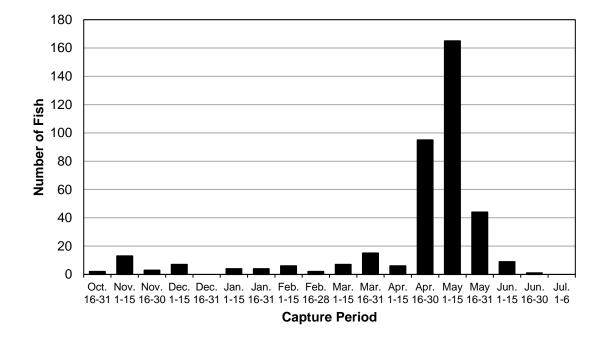


Figure 8. Emigration timing of natural spring Chinook salmon captured during smolt trap operations (rkm 3) on the Tucannon River for the 2017-18 migration year.

Natural spring Chinook emigrating from the Tucannon River (BY 2016) averaged 106 mm (Figure 9), with a CV of 8.6%. This is in comparison to a mean length of 162 mm for hatchery-origin fish (BY 2016) released from Curl Lake Acclimation Pond (Gallinat and Ross 2018).

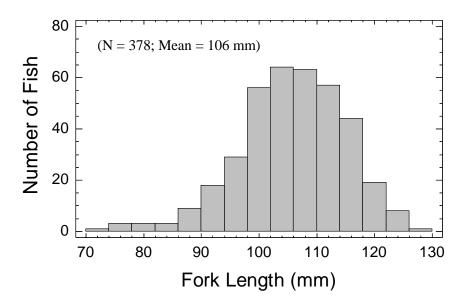


Figure 9. Length frequency distribution of sampled natural spring Chinook salmon captured in the Tucannon River smolt trap, 2017/2018 season.

Each week we attempted to determine trap efficiency by clipping a portion of the caudal fin on a representative subsample of captured migrants and releasing them approximately one kilometer upstream. The percent of marked fish recaptured was used as an estimate of weekly trapping efficiency. In previous reports we attempted to relate trap efficiency to abiotic factors such as stream flow or staff gauge level based on similar juvenile outmigration studies (Groot and Margolis 1991; Seiler et al. 1999; Cheng and Gallinat 2004). We found no significant relationships.

To estimate potential juvenile migrants passing when the trap was not operated for short intervals (≤ 5 days), such as periods when freshets washed out large amounts of debris from the river, we calculated the mean number of fish trapped for three days before and three days after non-trapping periods. The mean number of fish trapped daily was then divided by the estimated trap efficiency to calculate fish passage. The estimated number of fish passing each day was then applied to each day the trap was not operated.

We estimated outmigration based on the approach of Steinhorst et al. (2004). This involved using a Bailey-modified Lincoln-Peterson estimation with 95% bootstrap confidence intervals by running the Gauss Run-Time computer program (version 7.0). Bootstrap iterations numbered 1,000. The program allows for the division of the out-migration trapping season into strata with

similar capture efficiencies as long as at least seven marked recaptures occurred. Strata with less than seven recaptures were grouped with either the preceding or following strata, depending upon similarity in trapping/flow conditions. Where river conditions were similar, we used our best judgment to group the strata.

A number of assumptions are required to attain unbiased estimates of smolt production. How well the assumptions are met will determine the accuracy and precision of the estimates. Some of these assumptions are:

- Survival from release to the trap was 100%.
- All marked fish are identified and correctly enumerated.
- Fish do not lose their marks.
- All fish in the tag release group emigrate (i.e., do not residualize in the area of release).
- Marked fish are caught at the same rate as unmarked fish.

Accurate outmigration estimates are critical for describing survival trends and to measure population response to management actions such as hatchery supplementation and habitat restoration. It has been suggested that researchers test the assumptions of population estimators being used (Peterson et al. 2004; Rosenberger and Dunham 2005). Other WDFW researchers have identified bias in smolt trap efficiency estimates that were conducted similarly to Tucannon River trap efficiency tests. While the evidence of estimator bias and error seem consistent in the literature, our methods differ from those, and must be tested to estimate the level of error, and confirm compliance of the methods with underlying assumptions. If bias in our methods has been consistent over the term of the data, data could be adjusted as appropriate once bias is measured.

In past years, we attempted to measure bias in our efficiency estimates through the use of PIT tags and the PIT tag array that has been deployed in the lower Tucannon River below the smolt trap. Representative groups of fish were fin clipped and PIT tagged to determine smolt trap efficiency based on either recaptures in the smolt trap or detections by the PIT tag array in the Tucannon River. However, the PIT tag array proved unreliable in its detection of juvenile salmonids. If PIT tag technology in the future allows for greater detections of juvenile salmonids, then we will attempt to measure trapping bias again. We estimate that 8,058 (S.E. 2,730.5; 95% C.I. 4,618-16,014) migrant natural-origin spring Chinook (2016 BY) passed the smolt trap during 2017-2018.

Smolt Migration to Lower Monumental and McNary Dams

With the use of PIT tags, we monitored the migration travel time and speed of juvenile spring Chinook from the Tucannon River (both hatchery and natural origin) to Lower Monumental and McNary Dams for the 2018 outmigration. Hatchery fish were PIT tagged prior to transfer to Curl Lake AP (rkm 66) for acclimation, while natural origin fish were PIT tagged at the Tucannon River smolt trap (rkm 3), described earlier.

Hatchery fish were volitionally released from Curl Lake AP from 9 to 27 April 2018. The PIT tagging file submitted to PTAGIS allows for only one release date. Therefore, the following summary uses both 9 April and 27 April as the release date, since it is unknown when a PIT tagged fish actually left Curl Lake AP (Table 21). Based on previous observations, the majority of the spring Chinook do not exit the lake until towards the end of the release period.

Natural origin spring Chinook were released immediately following PIT tagging at the smolt trap, so the release date/time provided in the PTAGIS tagging files have been used for travel time/speed calculations. Natural origin fish detected at Lower Monumental and McNary dams in 2018 were PIT tagged at the smolt trap and released between 14 February to 28 May 2018 (Table 21). Natural-origin fish tend to have faster migration time to the dams than hatchery-origin fish (Table 21).

Table 21. Median and mean travel time and outmigration speed of hatchery and natural-origin Tucannon River spring Chinook to Lower Monumental and McNary Dams in 2018.

Release	Sample	Median Travel	Mean Travel	Mean Travel	Median Travel	Mean Travel	Mean Travel
Dates	Size	Days			Speed (km/day)	Speed (km/day)	Speed S.D.
Hatchery-origin -	Lower Moi	numental Da	am				
4/09/18	867	29.0	30.7	6.0	3.4	3.3	0.6
4/27/18	867	11.0	12.7	6.0	9.0	9.6	5.1
Natural-origin – L	ower Monu	ımental Dar	n				
2/14/18 to 5/28/18	52	2.6	6.8	12.5	13.8	12.8	6.1
Hatchery-origin –	McNary Da	am					
4/09/18	738	30.9	31.7	7.1	3.4	3.3	0.7
4/27/18	738	12.9	13.7	5.4	17.0	18.3	7.6
Natural-origin – M	IcNary Dan	n					
2/14/18 to 5/28/18	31	2.6	4.5	7.2	15.3	16.5	6.2

Survival Rates

Point estimates of population sizes have been calculated for various life stages (Tables 22 and 23) of natural and hatchery-origin spring Chinook from spawning ground and juvenile mid-summer population surveys, smolt trapping, and fecundity estimates. Survivals between life stages have been calculated for both natural and hatchery salmon to assist in the evaluation of the hatchery program. These survival estimates provide insight as to where efforts should be directed to improve not only the survival of fish produced within the hatchery, but fish in the river as well.

As expected, juvenile (egg-parr-smolt) survival rates for hatchery fish are considerably higher than for naturally reared salmon (Table 24) because they have been protected in the hatchery. However, SARs to the Tucannon River of natural salmon were almost eight times higher (based on geometric means) than for hatchery-reared salmon (Tables 25 and 26). With the exception of the 2006 brood year, hatchery SARs (mean 0.24%; geometric mean 0.17%) documented from the 1985-2013 broods have been well below the original LSRCP survival assumption of 0.87% (which was used to size the original hatchery program of 132,000 smolts). Hatchery SARs for Tucannon River salmon need to substantially improve to meet the mitigation goal of 1,152 hatchery adult salmon. The target size at release was increased to 38 g fish (12 fpp) beginning with the 2011 brood year in an attempt to improve poor smolt-to-adult return survival rates.

Table 22. Estimates of *natural in-river produced* Tucannon spring Chinook salmon (both hatchery and natural origin parents) abundance by life stage for 1985-2018 broods.

Dunad	Earnala	a in Dissau	Maan E	J:4 8	Namelan	Name h on	Number	Progeny
Brood Year		s in River Hatchery		<u>ecundity</u> ^a Hatchery	Number of Eggs	Number of Parr ^b	Number of	(returning adults) ^c
1 cai	Matul al	Hatcher y	Maturar	Hatcher y	or reggs	UI I al I	Smolts	auurts)
1985 ^d	316		3,883		1,227,028	90,200	35,559	392
1986	200		3,916		783,200	102,600	51,004	467
1987	185		4,096		757,760	79,100	52,349	228
1988	117		3,882		454,194	69,100	35,925	502
1989	103	3	3,883	2,606	407,767	58,600	19,107	153
1990	128	52	3,993	2,697	651,348	86,259	32,969	94
1991	51	40	3,741	2,517	291,471	54,800	$30,000^{\rm e}$	7
1992	119	81	3,854	3,295	725,521	103,292	36,749	161
1993	112	80	3,701	3,237	673,472	86,755	34,623	177
1994	39	5	4,187	3,314	179,863	12,720	4,957	12
1995	5	0	5,224	0	26,120	0	75 ^e	6
1996	53	16	3,516	2,843	231,836	2,845	2,906	69
1997	39	34	3,609	3,315	253,461	32,913	25,553	791
1998	19	7	4,023	3,035	97,682	8,453	4,849	388
1999	1	40	3,965	3,142	129,645	15,944	8,721	141
2000	26	66	3,969	3,345	323,964	44,618	29,442	448
2001	219	78	3,612	3,252	1,044,684	63,412	42,416	257
2002	104	195	3,981	3,368	1,070,784	72,197	64,036	212
2003	67	51	3,789	3,812	448,275	40,900	27,724	173
2004	117	43	3,444	2,601	514,791	30,809	21,057	399
2005	82	25	3,773	2,903	381,961	21,162	17,579	739
2006	73	36	2,887	2,654	306,295		30,228	1,720
2007	50	31	3,847	2,869	281,289		8,529	610
2008	95	104	3,732	3,020	668,620		14,778	884
2009	178	273	3,639	3,267	1,539,633		45,538	619
2010	278	203	3,579	3,195	1,643,547		35,080	938
2011	175	122	4,230	3,301	1,142,972		23,376	727
2012	115	54	3,151	2,563	500,767		12,886	213
2013	44	20	3,798	3,185	230,812		3,831	69
2014	105	19	3,699	3,290	450,905		6,604	88
2015	64	127	3,839	3,468	686,132		14,305	0
2016	53	101	3,704	3,179	517,391		8,058	
2017	12	58	3,393	3,034	216,688			
2018	12	97	2,977	2,860	313,144			

^a 1985 and 1989 mean fecundity of natural females is the average of 1986-88 and 1990-93 brood years.

^b Number of parr estimated from electrofishing (1985-1989), Line transect snorkel surveys (1990-1992), and Total Count snorkel surveys (1993-2005).

^c Numbers do not include down river harvest or other out-of-basin recoveries.

^d The 1985 redd counts were revised on the SASI database to account for all redds during the spawning season (WDFW 2017)

^e Smolt estimates could not be estimated with the GAUSS program for the 1991 and 1995 brood years. Numbers of smolts for those brood years were obtained from estimates in the annual reports.

Table 23. Estimates of Tucannon spring Chinook salmon abundance (*spawned and reared in the hatchery*) by life stage for 1985-2018 broods.

Dunad	Famalas	C	Meen E	a a	Number	Name have	Namelan	Progeny
Brood Year		Spawned Hatchery		ecundity ^a Hatchery	Number of Eggs	Number of Parr	Number of	(returning Adults) ^b
1 car	Maturar	Hatchery	Maturar	Hatchery	of Eggs	orran	Smolts	Addits
1985	4		3,883		14,843	13,401	12,922	45
1986	57		3,916		187,958	177,277	152,725	319
1987	48		4,096		196,573	164,630	152,165	178
1988	49		3,882		182,438	150,677	145,146	385
1989	28	9	3,883	2,606	133,521	103,420	99,057	209
1990	21	23	3,993	2,697	126,334	89,519	85,737	28
1991	17	11	3,741	2,517	91,275	77,232	74,064	25
1992	28	18	3,854	3,295	156,359	151,727	87,752°	76
1993	21	28	3,701	3,237	168,366	145,303	138,848	138
1994	22	21	4,187	3,314	161,707	132,870	130,069	32
1995	6	15	5,224	0	85,772	63,935	62,144	177
1996	18	19	3,516	2,843	117,287	80,325	76,219	265
1997	17	25	3,609	3,315	144,237	29,650	24,186	176
1998	30	14	4,023	3,035	161,019	136,027	127,939	793
1999	1	36	3,965	3,142	113,544	106,880	97,600	33
2000	3	35	3,969	3,345	128,980	123,313	102,099	157
2001	29	27	3,612	3,252	184,127	174,934	146,922	127
2002	22	25	3,981	3,368	169,364	151,531	123,586	121
2003	17	20	3,789	3,812	140,658	126,400	71,154	71
2004	28	18	3,444	2,601	140,459	128,877	67,542	120
2005	25	24	3,773	2,903	161,345	151,466	149,466	690
2006	18	27	2,887	2,654	123,629	112,350	106,530	1,122
2007	27	9	3,847	2,869	124,543	117,182	114,681	261
2008	17	43	3,732	3,020	193,324	183,925	172,897	643
2009	42	54	3,639	3,267	323,341	292,291	231,437 ^d	300
2010	39	44	3,579	3,195	279,969	237,861	201,585	194
2011	45	41	4,230	3,301	325,701	305,215	259,964	711
2012	48	47	3,151	2,563	269,514	246,033	203,510	514
2013	48	30	3,798	3,185	275,188	263,630	207,859	362
2014	39	27	3,699	3,290	231,026	226,300	221,099	456
2015	55	20	3,839	3,468	280,519	266,134	199,686	39
2016	31	41	3,704	3,179	245,174	230,106	209,031	
2017	8	52	3,393	3,034	181,664	166,590	144,219	
2018	9	67	2,977	2,860	212,973	204,364		

^a 1985 and 1989 mean fecundity of natural females is the average of 1986-88 and 1990-93 brood years; 1999 mean fecundity of natural fish is based on the mean of 1986-1998 brood years.

b Numbers do not include down river harvest or other out-of-basin recoveries.

^c Number of smolts is less than actual release number. 57,316 parr were released in October 1993, with an estimated 7% survival. Total number of hatchery fish released from the 1992 brood year was 140,725. We therefore use the listed number of 87,752 as the number of smolts released.

Parr determined to be in excess of program goals were released at Russell Springs and are not included in number of parr and smolts.

Table 24. Percent survival by brood year for juvenile salmon and the multiplicative advantage of hatchery-reared salmon over naturally-reared salmon in the Tucannon River.

	Natural		Hatchery			Hatchery Advantage			
Brood	Egg to	Parr to	Egg to	Egg to	Parr to	Egg to	Egg to	Parr to	Egg to
Year	Parr	Smolt	Smolt	Parr	Smolt	Smolt	Parr	Smolt	Smolt
1985	7.4	39.4	2.9	90.3	96.4	87.1	12.3	2.4	30.0
1986	13.1	49.7	6.5	94.3	86.2	81.3	7.2	1.7	12.5
1987	10.4	66.2	6.9	83.8	92.4	77.4	8.0	1.4	11.2
1988	15.2	52.0	7.9	82.6	96.3	79.6	5.4	1.9	10.1
1989	14.4	32.6	4.7	77.5	95.8	74.2	5.4	2.9	15.8
1990	13.2	38.2	5.1	70.9	95.8	67.9	5.4	2.5	13.4
1991	18.8	54.7	10.3	84.6	95.9	81.1	4.5	1.8	7.9
1992	14.2	35.6	5.1	97.0	57.8	56.1	6.8	1.6	11.1
1993	12.9	39.9	5.1	86.3	95.6	82.5	6.7	2.4	16.0
1994	7.1	39.0	2.8	82.2	97.9	80.4	11.6	2.5	29.2
1995	0.0	0.0	0.3	74.5	97.2	72.5			
1996	1.2	102.1	1.3	68.5	94.9	65.0	55.8	0.9	51.8
1997	13.0	77.6	10.1	20.6	81.6	16.8	1.6	1.1	1.7
1998	8.7	57.4	5.0	84.5	94.1	79.5	9.8	1.6	16.0
1999	12.3	54.7	6.7	94.1	91.3	86.0	7.7	1.7	12.8
2000	13.8	66.0	9.1	95.6	82.8	79.2	6.9	1.3	8.7
2001	6.1	66.9	4.1	95.0	84.0	79.8	15.7	1.3	19.7
2002	6.7	88.7	6.0	89.5	81.6	73.0	13.3	0.9	12.2
2003	9.1	67.8	6.2	89.9	56.3	50.6	9.8	0.8	8.2
2004	6.0	68.3	4.1	91.8	52.4	48.1	15.3	0.8	11.8
2005	5.5	83.1	4.6	93.9	98.7	92.6	16.9	1.2	20.1
2006			9.9	90.9	94.8	86.2			8.7
2007			3.0	94.1	97.9	92.1			30.4
2008			2.2	95.1	94.0	89.4			40.5
2009			3.0	90.4	79.2	71.6			24.2
2010			2.1	85.0	84.7	72.0			33.7
2011			2.0	93.7	85.2	79.8			39.0
2012			2.6	91.3	82.7	75.5			29.3
2013			1.7	95.8	78.8	75.5			45.5
2014			1.5	98.0	97.7	95.7			65.3
2015			2.1	94.9	75.0	71.2			34.1
2016			1.6	93.9	90.8	85.3			54.7
2017				91.7	86.6	79.4			
2018				96.0					
Mean	10.0	56.2	4.6	87.0	87.0	75.3	11.3	1.6	23.4
SD	4.8	22.7	2.8	13.9	12.2	15.1	11.2	0.6	15.9

Table 25. Adult returns and SARs of natural salmon to the Tucannon River for brood years 1985-2015. (2014 and 2015 are incomplete brood years included for comparison.)

	Estimated	Number of Adult Returns, observed (obs) and expanded (exp) ^a						SAR (%)	
Brood	Number	Age 3		Age 4		Ag	ge 5	With	No
Year	of Smolts	Obs	Exp	Obs	Exp	Obs	Exp	Jacks	Jacks
1985	35,559	8	19	110	255	36	118	1.10	1.05
1986 ^b	51,004	1	2	115	375	28	90	0.92	0.91
1987	52,349	0	0	52	167	29	61	0.44	0.44
1988	35,925	1	3	136	318	74	181	1.40	1.39
1989	19,107	5	12	47	115	23	26	0.80	0.74
1990	32,969	3	8	63	72	12	14	0.29	0.26
1991	$30,000^{\circ}$	0	0	4	5	1	2	0.02	0.02
1992	36,749	2	2 2	84	138	16	21	0.44	0.43
1993	34,623	1	2	62	100	58	75	0.51	0.51
1994	4,957	0	0	8	10	1	2	0.24	0.24
1995	75°	0	0	1	1	2	5	8.00	8.00
1996	2,906	0	0	27	63	2	6	2.37	2.37
1997	25,553	6	14	234	695	29	82	3.10	3.04
1998	4,849	3	9	91	259	43	120	8.00	7.82
1999	8,721	3	9	44	124	3	8	1.62	1.51
2000	29,442	1	3	148	392	16	53	1.52	1.51
2001	42,416	0	0	73	246	5	11	0.61	0.61
2002	64,036	1	3	68	134	36	75	0.33	0.33
2003	27,724	4	7	55	115	21	51	0.62	0.60
2004	21,057	4	8	147	352	19	39	1.89	1.86
2005	17,579	23	131	260	595	2	13	4.20	3.46
2006	30,228	32	116	298	1,389	73	215	5.69	5.31
2007	8,529	4	41	133	456	22	113	7.15	6.67
2008	14,778	10	85	150	693	23	106	5.98	5.41
2009	45,538	1	7	94	554	10	58	1.36	1.34
2010	35,080	3	91	136	799	17	48	2.67	2.41
2011	23,376	3	41	145	619	31	67	3.11	2.93
2012	12,886	4	65	64	148	0	0	1.65	1.15
2013	3,831	2	8	25	60	1	1	1.80	1.59
2014	6,604	9	9	44	79			1.33	1.20
2015	14,305	0	0					0.00	0.00
Mean								2.34 ^d	2.20
Geometr	ric Mean							1.29 ^d	1.23 ^d

Expanded numbers are calculated from the proportion of each known age salmon recovered in the river and from broodstock collections in relation to the total estimated return to the Tucannon River. Expansions do not include down river harvest or Tucannon River fish straying to other systems.

b One known (expanded to two) Age 6 salmon was recovered.

^c Numbers of smolts obtained from estimates in the annual reports.

d The 2014 and 2015 SARs are not included in the mean.

Table 26. Adult returns and SARs of hatchery salmon to the Tucannon River for brood years 1985-2015. (2014 and 2015 are incomplete brood years included for comparison.)

	Estimated	Numb	Number of Adult Returns, observed (obs) and expanded (exp) ^a						SAR (%)	
Brood	Number	Ag	ge 3		e 4	Ag	ge 5	_ With	No	
Year	of Smolts	Obs	Exp	Obs	Exp	Obs	Exp	Jacks	Jacks	
1985	12,922	9	19	25	26	0	0	0.35	0.20	
1986	152,725	79	83	99	220	8	16	0.21	0.15	
1987	152,165	9	19	70	145	8	14	0.12	0.10	
1988	145,146	46	99	140	244	26	42	0.27	0.20	
1989	99,057	7	13	100	179	14	17	0.21	0.20	
1990	85,737	3	6	16	20	2	2	0.03	0.03	
1991	74,064	4	5	20	20	0	0	0.03	0.03	
1992	87,752	11	11	50	63	2	2	0.09	0.07	
1993	138,848	11	15	93	107	15	16	0.10	0.09	
1994	130,069	2	4	21	23	4	5	0.02	0.02	
1995	62,144	13	16	117	157	2	4	0.28	0.26	
1996	76,219	44	59	100	192	5	14	0.35	0.27	
1997	24,186	7	13	59	163	0	0	0.73	0.67	
1998	127,939	36	97	174	546	39	150	0.62	0.54	
1999	97,600	3	11	5	19	1	3	0.03	0.02	
2000	102,099	7	26	47	131	0	0	0.15	0.13	
2001	146,922	7	19	51	107	1	1	0.09	0.07	
2002	123,586	3	6	60	99	6	16	0.10	0.09	
2003	71,154	1	2	23	65	2	4	0.10	0.10	
2004	67,542	7	18	59	98	2	4	0.18	0.15	
2005	149,466	50	291	180	399	0	0	0.46	0.27	
2006	106,530	60	402	180	679	19	41	1.05	0.68	
2007	114,681	7	74	76	171	5	16	0.23	0.16	
2008	172,897	27	269	104	369	6	5	0.37	0.22	
2009	231,437	1	8	62	291	1	1	0.13	0.13	
2010	201,585	2	66	55	113	2	15	0.10	0.06	
2011	259,964	8	62	113	633	10	16	0.27	0.25	
2012	203,510	24	184	136	319	3	11	0.25	0.16	
2013	207,859	100	116	116	246	0	0	0.17	0.12	
2014	221,099	128	140	166	316			0.21	0.14	
2015	199,686	8	39					0.02	0.00	
Mean								$0.24^{\rm b}$	0.19^{b}	
Geometr	ric Mean							$0.17^{\rm b}$	0.13 ^b	

Expanded numbers are calculated from the proportion of each known age salmon recovered in the river and from broodstock collections in relation to the total estimated return to the Tucannon River. Expansions do not include down river harvest or Tucannon River fish straying to other systems.

As previously stated, overall survival of hatchery salmon to return as adults was higher than for naturally reared fish because of the early-life survival advantage (Table 24). With the exception of eleven brood years (37%), naturally produced fish have been below the replacement level (Figure 10; Table 27). Based on adult returns from the 1985-2014 broods, naturally reared

b The 2014 and 2015 SARs are not included in the mean.

salmon produced only 0.72 adults for every spawner, while hatchery reared fish produced 2.08 adults (based on geometric means).

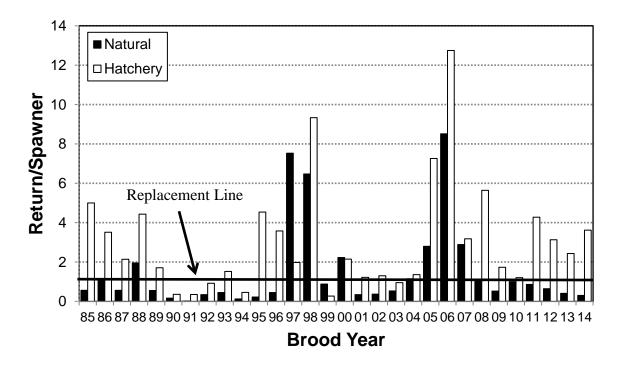


Figure 10. Return per spawner (with replacement line) for the 1985-2014 brood years (2014 incomplete brood year).

Table 27. Progeny-to-parent survival estimates of Tucannon River spring Chinook salmon from 1985 through 2014 brood years (2014 brood year incomplete).

	Nat	tural Salm	on_	Hat			
		Number			Number		Hatchery
Brood	Estimated	of	Return/	Number	of	Return/	to Natural
Year	Spawners	Returns	Spawner	Spawned	Returns	Spawner	Advantage
1985	695	392	0.56	9	45	5.00	8.9
1986	440	467	1.06	91	319	3.51	3.3
1987	407	228	0.56	83	178	2.14	3.8
1988	257	502	1.95	87	385	4.43	2.3
1989	276	153	0.55	122	209	1.71	3.1
1990	572	94	0.16	78	28	0.36	2.2
1991	291	7	0.02	72	25	0.35	14.4
1992	476	161	0.34	83	76	0.92	2.7
1993	397	177	0.45	91	138	1.52	3.4
1994	97	12	0.12	69	32	0.46	3.7
1995	27	6	0.22	39	177	4.54	20.4
1996	152	69	0.45	74	265	3.58	7.9
1997	105	791	7.53	89	176	1.98	0.3
1998	60	388	6.47	85	793	9.33	1.4
1999	160	141	0.88	122	33	0.27	0.3
2000	201	448	2.23	73	157	2.15	1.0
2001	766	257	0.34	104	127	1.22	3.6
2002	568	212	0.37	93	121	1.30	3.5
2003	329	173	0.53	75	71	0.95	1.8
2004	346	399	1.15	88	120	1.36	1.2
2005	264	739	2.80	95	690	7.26	2.6
2006	202	1,720	8.51	88	1,122	12.75	1.5
2007	211	610	2.89	82	261	3.18	1.1
2008	796	884	1.11	114	643	5.64	5.1
2009	1191	619	0.52	173	300	1.73	3.3
2010	938	938	1.00	161	194	1.20	1.2
2011	849	727	0.86	166	711	4.28	5.0
2012	335	213	0.64	164	514	3.13	4.9
2013	170	69	0.41	149	362	2.43	6.0
2014	294	88	0.30	126	456	3.62	12.1
Mean			1.50			3.08	4.4
Geometric							
Mean			0.72			2.08	2.9

Beginning with the 2006 brood year, the annual smolt goal was increased from 132,000 to 225,000 to help offset for the higher mortality of hatchery-origin fish after they leave the hatchery. This should increase adult salmon returns back to the Tucannon River. However,

based on current hatchery SARs the increase in production would still not produce enough adult returns to reach the LSRCP mitigation goal. Hatchery production changes that result in increased survival/return numbers may result in a Proportionate Natural Influence (PNI) of less than 0.5. This level is generally not considered acceptable for supplementation programs. Historically the PNI for the Tucannon Spring Chinook Program has generally been above 0.5 (Appendix I).

The long-term restoration goal for the State of Washington is to provide a total annual return of between 2,400-3,400 hatchery and natural origin spring Chinook salmon back to the Tucannon River (SRSRB 2006) that should include at least 750 natural origin fish over a 10-year geometric mean (population viability threshold) (ICTRT 2008). Natural origin returns had been increasing, but decreased during recent years (2016-2018) due to poor ocean conditions (Figure 11).

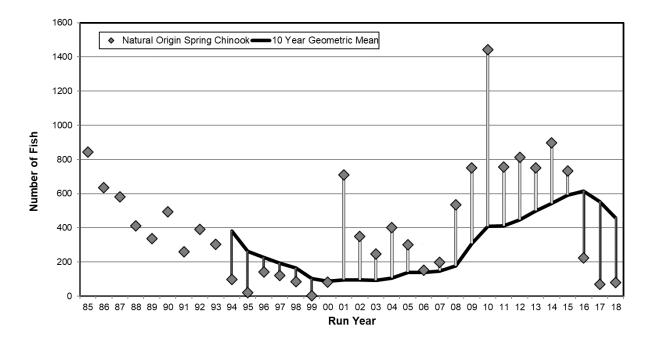


Figure 11. Tucannon River spring Chinook natural origin returns with the moving ten-year geometric mean (black line) for the 1985-2018 run years.

Fishery Contribution and Out-of-Basin Straying

The original goal of the LSRCP supplementation program was to enhance returns of salmon to the Tucannon River by providing 1,152 adult hatchery origin fish (the number estimated to have been lost to the project area due to the construction and operation of the Lower Snake River hydropower system) to the river from hatchery-reared smolt releases. Such an increase would allow for limited harvest and increased spawning. However, hatchery adult returns have always been below the mitigation goal (Figure 12). Based on CWT recoveries reported to the Regional Mark Information System (RMIS) database (Appendix J), sport, commercial, and treaty ceremonial harvest combined accounted for an average of less than 6% of the adult hatchery fish recovered for the 1985-1996 brood years. Increased fishery impacts occurred for the 1997 through 1999 broods when the states implemented mark-selective fisheries in the lower Columbia River (fishery harvest comprised an average of 19% for hatchery fish recoveries). As such, the WDFW subsequently stopped adipose fin clipping spring Chinook hatchery production from the Tucannon River (Gallinat et al. 2001) to lessen non-tribal fishery impacts from the Columbia River, and newly implemented Snake River fisheries. This change in marking has resulted in lower sport fishery impacts. Based on CWT recoveries for the 2000-2015 brood years, harvest (primarily commercial) has accounted for only 5.8% of the hatchery adult CWT recoveries (Appendix J).

Out-of-basin stray rates of Tucannon River spring Chinook have generally been low (Appendix J), with an average of 3.3% of the adult hatchery fish straying to other river systems/hatcheries for brood years 1985-2015 (range 0-100%). Recent (2005-2015 BYs) locations that Tucannon River spring Chinook have strayed are listed in Table 28.

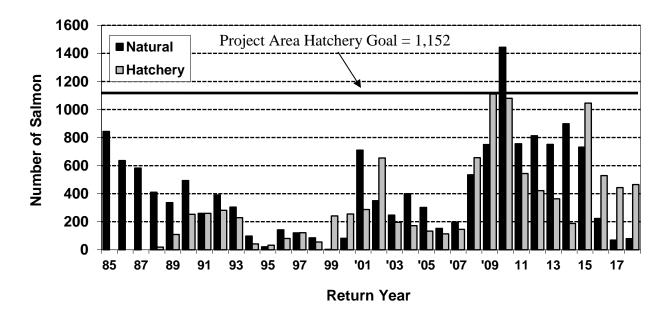


Figure 12. Total escapement for Tucannon River spring Chinook salmon for the 1985-2018 run years.

Table 28. Summary of Tucannon River spring Chinook recovered outside of the Tucannon River, and represent possible strays to other areas $(2005-2015\ brood\ years)$.

Brood			Recovery	Number of CWT
Year	CWT Codes	Recovery Location	Date	Recovered/Expanded
2005	633477,633599	None	N/A	0/0
2006	634093, 634094, 634194	Powell Rack, Lochsa River	08/27/09	1/1
2007	634687, 634688	None	N/A	0/0
2008	635174, 635175	None	N/A	0/0
2009	635565, 635566	Lower Granite Dam Trap	10/17/13	1/1
2010	636075, 636076	None	N/A	0/0
2011	636441, 636442	Lower Granite Dam Trap	09/24/14	1/1
2012	636585, 636586	Lewis River Hatchery	08/31/16	1/1
		SF Walla Walla River	09/13/16	1/1
2013	636742, 636743	None	N/A	0/0
2014	636884	None	N/A	0/0
2015	637039	Three Mile Dam, Umatilla River	0904/18	1/1
Totals				6/6
Total reco	1,656/5,427			
Percent str	0.36%/0.11%			

Adjusted Hatchery SAS

Using CWT recoveries from the RMIS database, we adjusted Tucannon River spring Chinook hatchery smolt-to-adult survival (SAS) to include all known recoveries both from within and outside the Tucannon River. Increased fishing mortality resulted in higher adjusted SAS for the 1997, 1998, and 2006 brood years. With minor exceptions (1997 and 2006 brood years), even after adjustment, hatchery SAS were still below the original LSRCP survival assumption of 0.87% (Table 29).

Table 29. Hatchery SAS adjusted for recoveries from outside the Tucannon River subbasin as reported in the RMIS database, 1985-2013 brood years. (Data downloaded from RMIS database on 2/13/19).

Brood	Estimated Number	Expanded Return to	Expanded Other	Grand Total of CWT Hatchery	Original Hatchery	Adjusted Hatchery
Year	of Smolts	Tucannon	Returns ^a	Origin Recoveries	SAR (%)	SAS (%)
1985	12,922	45	1	46	0.35	0.36
1986	152,725	319	15	334	0.21	0.22
1987	152,165	178	2	180	0.12	0.12
1988	145,146	385	26	411	0.27	0.28
1989	99,057	209	12	221	0.21	0.22
1990	85,737	28	0	28	0.03	0.03
1991	74,064	25	4	29	0.03	0.04
1992	87,752	76	17	93	0.09	0.11
1993	138,848	138	11	149	0.10	0.11
1994	130,069	32	0	32	0.02	0.02
1995	62,144	177	2	179	0.28	0.29
1996	76,219	265	5	270	0.35	0.35
1997	24,186	176	41	217	0.73	0.90
1998	127,939	793	216	1,009	0.62	0.79
1999	97,600	33	3	36	0.03	0.04
2000	102,099	157	1	158	0.15	0.15
2001	146,922	127	5	132	0.09	0.09
2002	123,586	121	0	121	0.10	0.10
2003	71,154	71	0	71	0.10	0.10
2004	67,542	120	1	121	0.18	0.18
2005	149,466	690	2	692	0.46	0.46
2006	106,530	1,122	36	1,158	1.05	1.09
2007	114,681	261	5	266	0.23	0.23
2008	172,897	643	4	647	0.37	0.37
2009	231,437	300	6	306	0.13	0.13
2010	201,585	194	1	195	0.10	0.10
2011	259,964	711	23	734	0.27	0.28
2012	203,510	514	3	517	0.25	0.25
2013	207,859	362	11	373	0.17	0.18
Mean					0.24	0.26
Geometr	ric Mean				0.17	0.17

^a Includes expanded RMIS CWT recoveries from sources outside the Tucannon River Subbasin (i.e., sport and commercial fisheries, Tucannon strays in other river systems, etc.).

LFH vs. TFH Reared Comparison

As mentioned earlier in this report, Tucannon River spring Chinook salmon that are collected for broodstock at the TFH adult trap are transported to LFH for holding and spawning, and incubation and early life rearing. This is primarily due to the availability of colder, pathogen free water and rearing space at LFH. However, during the review of the Tucannon River Spring Chinook HGMP, the Hatchery Scientific Review Group recommended developing long-term rearing capabilities within the Tucannon River Subbasin as one of their recommendations for the hatchery program (HSRG 2009). This recommendation was based on questions that were raised as to whether rearing the hatchery fish for the majority of their early life at LFH affected their survival and ability to home back to the Tucannon River. To answer these questions, approximately 30,000 eggs were transferred to TFH for incubation and rearing for three brood years (BY11-13) for comparison to LFH reared fish (Appendix L). To avoid potential bias in recovery rates between the two release groups (Zhou 2002, Murdoch et al. 2010), we used PIT tag detections of migrating smolts and returning adults to compare performance and relative survival between the LFH reared and TFH reared groups of spring Chinook. Fish with PIT tags are detected through a network of interrogation systems currently in place in juvenile bypass systems and adult fishways at hydroelectric dams (Burke and Jepson 2006). In addition, small instream arrays have been developed to remotely detect PIT tagged fish (Zydlewski et al. 2006; Bond et al. 2007), and these units have been installed in the Tucannon River. Each group was tagged with a unique CWT and a subset (Target – 7,500) of each group was PIT tagged (Table 30).

Juvenile Survival

Survival probabilities were estimated by the Cormack-Jolly-Seber methodology using the Survival Under Proportional Hazards (SURPH) 3.0 computer model. The data files were created using the PitPro (version 4.19.7) computer program to translate raw PIT Tag Information System (PTAGIS) data of the Pacific States Marine Fisheries Commission into usable capture histories for the SURPH program. To determine significant differences in survival probabilities between groups, we used the Likelihood Ratio Test statistic. Estimated survival probabilities from Curl Lake to Lower Monumental Dam were not significantly different (P > 0.05) between the two groups (Table 30).

Adult Returns

Returning PIT tagged detected fish were assumed to be mature the year they entered freshwater after being in the marine environment. We calculated the smolt-to-adult survival (SAS) as the total number of fish that were detected within the Columbia and Snake River watersheds (Table

31). Smolt-to-adult return (SAR) was calculated as the number of fish that were detected in the Tucannon River (Table 31). We tested for differences in SAS and SAR rates between the two groups using a nonparametric Mann-Whitney (Wilcoxon) test, given that we were concerned about non-normality due to small sample sizes (Zar 1996). All statistical tests used a significance level of 0.05. Neither SAS (P = 0.82) nor SAR (P = 0.51) were significantly different between the two groups. The results do not show a significant benefit in either survival or homing back to the Tucannon River by rearing fish at TFH (Table 29). Based on these findings, we will continue to use LFH for holding and spawning, and incubation and early life rearing.

Table 30. Release number, size at release (g), and number of Tucannon River hatchery spring Chinook PIT tagged by brood year (BY) for each rearing location and SURPH survival probabilities from Curl Lake Acclimation Pond to Lower Monumental Dam for the 2011 to 2013 brood years.

D	DX711	DX712	DX/12
Rearing Location	BY11	BY12	BY13
LFH Group			
Number released	230,391	180,493	184,425
Size at release	33 g	32 g	37 g
CWT	63/64/41	63/65/85	63/67/42
Number PIT tagged (Target 7,500)	7,493	7,478	7,479
TFH Group			
Number released	29,573	23,017	23,434
Size at release	33 g	32 g	37 g
CWT	63/64/42	63/65/86	63/67/43
Number PIT tagged (Target 7,500)	7,494	7,471	7,482
SURPH Survival Probabilities			
LFH reared group (S.E.)	0.56(0.03)	0.63 (0.02)	0.49 (0.06)
TFH reared group (S.E.)	0.56 (0.03)	0.65 (0.02)	0.55 (0.06)
Likelihood Ratio Test Statistic	0.0594	0.4089	0.5022
Degrees of freedom	1	1	1
P-value	0.808	0.523	0.479

Table 31. Returning PIT tagged spring Chinook detected by age in the Columbia and Snake river mainstem corridor for smolt-to-adult survival (SAS) and detected in the Tucannon River for smolt-to-adult return (SAR) for the LFH and TFH reared groups (2011-2013 brood years) of Tucannon River spring Chinook.

					Total		Tucannon	
	Age 2	Age 3	Age 4	Age 5	Detections	SAS	Detections	SAR
LFH BY11	6	5	16	1	28	0.37%	21	0.28%
TFH BY11	7	2	8	0	17	0.23%	9	0.12%
LFH BY12	21	8	9	0	38	0.51%	11	0.15%
TFH BY12	18	12	6	0	36	0.48%	15	0.20%
LFH BY13	22	2	10	0	34	0.45%	9	0.12%
TFH BY13	23	6	5	0	34	0.45%	8	0.11%

Conclusions and Recommendations

Washington's LSRCP hatchery spring Chinook salmon program has failed to return adequate numbers of adults to meet the mitigation goal. This has occurred because SARs of hatchery origin fish have been consistently lower than what was originally assumed under the LSRCP program development. However, because of the advantage in survival during early life history stages for fish in the hatchery, the progeny-to-parent ratio for hatchery-produced fish has generally been above replacement and therefore may have sustained the overall Tucannon spring Chinook population during years when the population was at critically low levels. For a while, we had seen a significant rebound of natural origin fish and we came close to reaching the within river hatchery (LSRCP) goal of 1,152 fish in 2009 and 2010. Recent returns have been much lower, which is believed to be the result of recent poor ocean conditions. System survivals (in-river, migration corridor, and ocean) must increase in the near future for the hatchery program to succeed, the natural run to persist over the short-term, and the natural population to increase to a level where it can be sustainable over the long-term.

Until that time, the evaluation program will continue to document and study life history survivals, straying, carrying capacity, genotypic and phenotypic traits, and examine procedures within the hatchery that can be changed to improve the hatchery program and the natural population. Based on our previous studies and current data we recommend the following:

- 1. We continue to see annual differences in phenotypic characteristics of returning salmon (i.e., hatchery fish are generally younger and less fecund than natural origin fish), yet other traits such as run and spawn time are little changed over the program's history. Further, genetic analysis to date has detected little change in the natural population that may have resulted from hatchery actions.
 - <u>Recommendation</u>: Continue to collect as many carcasses as possible for the most accurate age composition data. Collect biological data (length, run timing, spawn timing, fecundity estimates, DNA samples, smolt trapping, and life stage survival) to document the effects (positive or negative) that the hatchery program may have on the natural population.
- 2. Based on annual redd densities and historical spring Chinook radio tag data, and PIT tag data from the TFH array, the Tucannon Fish Hatchery weir/trap has been an impediment to upstream passage of spring Chinook to the better spawning and rearing habitat upstream of the trap. Numerous options to improve attraction into the ladder/trap have been discussed with some recently implemented.

<u>Recommendation</u>: Monitor changes made to the ladder/trap to see if they improve passage for all fish species. If improvements are not seen, seek funding and engineering expertise to modify the design and/or operation of the weir/trap structure.

3. Subbasin and recovery planning for ESA listed species in the Tucannon River have identified factors limiting the spring Chinook population and strategies to recover the population.

<u>Recommendation</u>: Assist population conservation efforts by updating recent carrying capacity/density and straying effects, and productivity estimates of the Tucannon River so that hatchery stocking is appropriate, and hatchery and natural performance is measured against future basin capacity after habitat improvements.

4. We have documented that hatchery juvenile (egg-parr-smolt) survival rates are considerably higher than naturally reared salmon, and hatchery smolt-to-adult return rates are much lower than their natural origin counterpart. We need to identify and address the factors that limit hatchery SARs in order to meet mitigation goals and for natural production to meet recovery goals.

Beginning with the 2006 brood year, the annual hatchery smolt goal was increased from 132,000 to 225,000 to help offset the higher mortality of hatchery-origin fish after they leave the hatchery. In addition, the size of hatchery fish at release was increased in an attempt to increase hatchery survival. In theory, both of these actions should increase adult hatchery salmon returns back to the river, however, based on current survivals it does not appear these actions will produce enough adult returns to reach the LSRCP adult mitigation goal.

Because of this, WDFW, along with the co-managers, have proposed additional hatchery spring Chinook programs within SE Washington. A hatchery program using Tucannon River stock is in the planning stages for Asotin Creek, while a program using Carson stock has been approved for the Touchet River, with eyed eggs shipped to LFH from the 2018 brood year and first releases planned for the spring of 2020. Adult returns from these two additional hatchery programs will be additive to the Tucannon returns, and will contribute towards the LSRCP spring Chinook mitigation goal (1,152) for Washington.

Recommendation: Continue to compare hatchery and natural survival rates from other reference watersheds compare survival rates documented for Tucannon River spring Chinook. Continue to discuss alternative release strategies with the managers to see if survival rates can be improved to provide greater adult returns. Utilize fish carcasses from hatchery operations for stream nutrient enrichment to improve overall productivity and survival of Tucannon River spring Chinook. Continue to monitor straying into the Tucannon

River to insure the addition of Touchet River Carson stock hatchery fish does not go above the NOAA Fisheries acceptable stray proportion of 5%. Over the course of the next year, determine how the LSRCP mitigation goal will be partitioned between the Tucannon, Touchet, and Asotin Creek hatchery programs.

5. Over the last few years, we have documented higher in-river pre-spawn mortality than what was observed historically. The mechanism for this higher loss is thought to be due to a combination of drought years with higher water temperatures and pathogen load. However, the high loss has prompted drastic action within the program, whereby all, or the majority of the returns to the TFH trap between 2015 to 2018 have been collected and held at LFH for adult outplanting. Results from the first year (2015) of adult outplants appeared successful, with > 90% of the fish spawning, contrasted to 30% survival of fish left in the river. From 2016-2018, a range of 55-72% of outplanted fish successfully spawned.

Recommendation: Continue to monitor in-river pre-spawn mortality. Continue intensive monitoring of adult outplants, when that strategy is employed, to determine spawning success. Weigh all pertinent information (pre-spawn mortality rates, outplant success, predicted run sizes, risk of holding all fish at one facility, etc.) and inform co-managers and NOAA Fisheries on future adult outplants. An agreed upon population threshold trigger is needed to determine whether to pass fish at the adult trap or hold fish at LFH for outplanting. A trigger has been suggested by M&E staff (allow outplanting below an estimated return of 400 adults), but has yet to be agreed upon by the co-managers.

Literature Cited

- Bond, M. H., C. V. Hanson, R. Baertsch, S. A. Hayes, and R. B. MacFarlane. 2007. A new low cost instream antenna system for tracking passive integrated transponder (PIT)—tagged fish in small streams. Transactions of the American Fisheries Society 136: 562-566.
- Bugert, R., P. LaRiviere, D. Marbach, S. Martin, L. Ross, and D. Geist. 1990. Lower Snake River Compensation Plan Salmon Hatchery Evaluation Program 1989 Annual Report to U.S. Fish and Wildlife Service, AFF 1/LSR-90-08, Cooperative Agreement 14-16-0001-89525. Washington Department of Fisheries, Olympia, Washington.
- Bumgarner, J., L. Ross, and M. Varney. 2000. Lower Snake River Compensation Plan Tucannon River Spring Chinook Salmon Hatchery Evaluation Program 1998 and 1999 Annual Reports to U.S. Fish and Wildlife Service, Cooperative Agreements 1448-14110-98-J057 and CA-14110-9-J070. Washington Department of Fish and Wildlife, Olympia, Washington. Report # FPA00-17.
- Burke, B. J., and M. A. Jepson. 2006. Performance of passive integrated transponder tags and radio tags in determining dam passage behavior of adult Chinook salmon and steelhead. North American Journal of Fisheries Management 26: 742-752.
- Busack, C., and C. M. Knudsen. 2007. Using factorial mating designs to increase the effective number of breeders in fish hatcheries. Aquaculture 273: 24-32.
- Cheng, Y. W., and M. P. Gallinat. 2004. Statistical analysis of the relationship among environmental variables, inter-annual variability and smolt trap efficiency of salmonids in the Tucannon River. Fisheries Research 70: 229-238.
- Gallinat, M. P. and W-Y Chang. 2013. Phenotypic comparisons among natural-origin, hatchery-origin, and captive-reared female spring Chinook salmon from the Tucannon River, Washington. North American Journal of Aquaculture 75 (4): 572-581.
- Gallinat, M. P., J. D. Bumgarner, L. Ross, and M. Varney. 2001. Tucannon River Spring Chinook Salmon Hatchery Evaluation Program 2000 Annual Report to U.S. Fish and Wildlife Service, Cooperative Agreement 1411-09-J070. Washington Department of Fish and Wildlife, Olympia, Washington. Report # FPA01-05.
- Gallinat, M. P., and L. A. Ross. 2014. Tucannon River Spring Chinook Salmon Hatchery Evaluation Program 2013 Annual Report to U.S. Fish and Wildlife Service, Cooperative Agreement F13AC00096. Washington Department of Fish and Wildlife, Olympia, Washington. Report #FPA14-05. 104 p.
- Gallinat, M. P., and L. A. Ross. 2015. Tucannon River Spring Chinook Salmon Hatchery Evaluation Program 2014 Annual Report to U.S. Fish and Wildlife Service, Cooperative Agreement F14AC00010. Washington Department of Fish and Wildlife, Olympia, Washington. Report #FPA15-04. 108 p.

- Gallinat, M. P., and L. A. Ross. 2018. Tucannon River Spring Chinook Salmon Hatchery Evaluation Program 2017 Annual Report to U.S. Fish and Wildlife Service, Cooperative Agreement F16AC00033. Washington Department of Fish and Wildlife, Olympia, Washington. Report #FPA18-08. 110 p.
- Groot, C., and L. Margolis. 1991. Pacific salmon life histories. UBC Press. Vancouver, B.C. 564 p.
- HSRG (Hatchery Scientific Review Group). 2009. Columbia River Hatchery Reform System-Wide Report. February 2009. 271 p.
- ICTRT (Interior Columbia Technical Recovery Team). 2008. Current status assessments. U.S. Dept. Commer., NOAA, National Marine Fisheries Service, Northwest Region, Portland, Ore.
- Keefer, M. L., C. C. Caudill, C. A. Peery, and C. T. Boggs. 2008. Non-direct homing behaviours by adult Chinook salmon in a large, multi-stock river system. Journal of Fish Biology 72: 27-44.
- Kohler, A. E., T. N. Pearsons, J. S. Zendt, M. G. Mesa, C. L. Johnson, and P. J. Connolly. 2012. Nutrient enrichment with salmon carcass analogs in the Columbia River Basin, USA: a stream food web analysis. Transactions of the American Fisheries Society 141: 802-824.
- Meekin, T. K., 1967. Report on the 1966 Wells Dam Chinook tagging study. Report to Douglas County PUD, Contract 001-01-022-4201. Washington Department of Fisheries, Olympia, WA. 41 p. (Available from Douglas County PUD, 1151 Valley Mall Parkway, East Wenatchee, WA 98801.)
- Murdoch, A. R., T. N. Pearsons, and T. W. Maitland. 2009. The number of redds constructed per female spring Chinook salmon in the Wenatchee River basin. North American Journal of Fisheries Management 29: 441-446.
- Murdoch, A. R., T. N. Pearsons, T. W. Maitland. 2010. Estimating the spawning escapement of hatchery- and natural-origin spring Chinook salmon using redd and carcass data. North American Journal of Fisheries Management 30: 361-375.
- Nehlsen, W., J. E. Williams, and J. A. Lichatowich. 1991. Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho, and Washington. Fisheries 16 (3): 4-21.
- Peterson, J. T., R. F. Thurow, and J. W. Guzevich. 2004. An evaluation of multipass electrofishing for estimating the abundance of stream-dwelling salmonids. Transactions of the American Fisheries Society 113: 462-475.
- Rosenberger, A. E., and J. B. Dunham. 2005. Validation of abundance estimates from mark-recapture and removal techniques for rainbow trout captured by electrofishing in small streams. North American Journal of Fisheries Management 25: 1395-1410.

- Scheuerell, M. D., P. S. Levin, R. W. Zabel, J. G. Williams, and B. L. Sanderson. 2005. A new perspective of marine-derived nutrients to threatened stocks of Pacific salmon (Oncorhynchus spp.). Canadian Journal of Fisheries and Aquatic Sciences 62: 961-964.
- Seiler, D., L. Kishimoto, and S. Neuhauser. 1999. 1998 Skagit River wild 0+ Chinook production evaluation. Washington Department of Fish and Wildlife. Olympia, Washington. 73 pp.
- Snake River Lab. 2015. Tucannon River spring Chinook salmon pre-spawn mortality investigations for 2014. Washington Department of Fish and Wildlife. 23 p.
- Snake River Salmon Recovery Board (SRSRB). 2006. Technical Document Snake River Salmon Recovery Plan for S.E. Washington. Prepared for the Washington Governor's Salmon Recovery Office. 408 pages, plus appendices.
- Steinhorst, K., Y. Wu, B. Dennis, and P. Kline. 2004. Confidence intervals for fish outmigration estimates using stratified trap efficiency methods. Journal of Agricultural, Biological, and Environmental Statistics 9 (3): 284-299.
- Tucannon Subbasin Summary. 2001. L. Gephart and D. Nordheim, editors. Prepared for the Northwest Power Planning Council. Dayton, Washington.
- USACE (U.S. Army Corps of Engineers), 1975. Special Reports: Lower Snake River Fish and Wildlife Compensation Plan. Walla Walla, Washington.
- Washington Department of Fish and Wildlife (WDFW). 2017. Washington Department of Fish and Wildlife Salmonid Stock Inventory Database. WDFW, Olympia. Available: http://wdfw.wa.gov/conservation/fisheries/sasi/ (May 2017).
- Zar, J. H. 1996. Biostatistical analysis, 3rd edition. Prentice-Hall, Upper Saddle River, New Jersey.
- Zhou, S. 2002. Size-dependent recovery of Chinook salmon in carcass surveys. Transactions of the American Fisheries Society 131: 1,194-1,202.
- Zydlewski, G. B., G. Horton, T. Dubreuil, B. Letcher, S. Casey, and J. Zydlewski. 2006. Remote monitoring of fish in small streams: a unified approach using PIT tags. Fisheries 31 (10): 492-502

Appendix A: Annual Section 10 Permit #18024 Takes for 2018, and NEOR/SEWA Terms and Conditions Biological Opinion Reporting Requirements

Appendix A. Table 1. Summary of permissible direct take and actual take (in parenthesis) of Snake River spring/summer Chinook salmon for RM&E activities associated with the Tucannon River spring Chinook salmon program not directly related to fish culture for the 2018 calendar year. NMFS must be notified

within two days if the number handled, tagged, or killed are exceeded.

Origin and Life Stage	Take activity	Capture method And location	Total number handled annually (0.5% handling mortalities)	Number of those handled that are marked/tagged annually (1% handling mortalities	Total number killed or removed annually
Natural-origin juveniles	Capture, handle, tag, tissue sample, and release live animal.	Trapping operations that include a screw trap, beach seines, cast nets, dip nets, and use of backpack electroshock equipment throughout the Tucannon River.	18,000 (387)	7,000 (366)	Up to 160 (6)
Hatchery-origin juveniles	Capture, handle, tag, tissue sample, and release live animal.	Trapping operations that include a screw trap, beach seines, cast nets, dip nets, and use of backpack electroshock equipment throughout the Tucannon River.	35,000 (4,944)	7,000 (1,706)	Up to 245 (25)
Natural-origin adults & jacks	Capture, handle, tag, tissue sample, and release live animal.	Adult and jack fall back at screw traps.	5 (0)	5 (0) (genetic fin-clip or operculum punch – release live.)	Up to 2 ^a (0)
Hatchery-origin adults & jacks	Capture, handle, tag, tissue sample, and release live animal.	Adult and jack fall back at screw traps.	10 (0)	10 (0)	Up to 2 ^a (0)

^a In cases where total number killed is not likely to exceed one (1) mortality, NMFS rounds the total mortality up to two (2), so that operations are not halted completely at the first mortality.

Appendix A. Table 2. Summary of permissible direct take and actual take (in parenthesis) of listed Snake River spring/summer Chinook salmon for fish culture purposes for the Tucannon River Spring Chinook salmon program for the 2018 calendar year. NMFS must be notified within two days if the number

handled, tagged, or killed are exceeded.

Origin and Life Stage	Take activity	Capture method	Total number	Number of those handled that are marked/tagged annually (1% trap mortalities	Total number killed or removed annually
Natural-origin adults	Capture, handle, tag, tissue sample, remove for transport, holding, and outplanting in the Tucannon River, remove for use for broodstock, or release live animal (pass above weir).	Tucannon River adult weir and Lyons Ferry Hatchery ladder ^a	2,000 (62)	Up to 1,824b (passed live with finclip or operculum punch, PIT and/or radio tagged) (11 passed upstream) (14 outplanted upstream)	Up to 232 ^b broodstock and fish used for outplants (37 broodstock) Plus up to 19 adult trap mortalities (0)
Natural-origin jacks	Capture, handle, tag, tissue sample, remove for transport, holding, and outplanting in the Tucannon River, remove for use for broodstock, or release live animal (pass above weir).	Tucannon River adult weir and Lyons Ferry Hatchery ladder ^a	200 (11)	Up to 200 (passed live with fin- clip or operculum punch, PIT and/or radio tagged) (4 passed upstream) (7 outplanted upstream)	Up to 9 broodstock. (9) Plus up to 2 trap mortalities. (0)
Hatchery-origin adults	Capture, handle, tag, tissue sample, remove for transport, holding, and outplanting in the Tucannon River, remove for use for broodstock, or release live animal (pass above weir).	Tucannon River adult weir and Lyons Ferry Hatchery ladder ^a	1,400 ^b (up to 132 removed for broodstock based on sliding scale) (297)	Up to 1,400 ^b (passed live with finclip or operculum punch, PIT and/or radio tagged) (2 passed upstream) (124 outplanted upstream)	Up to 232 ^b broodstock and fish held for later outplanting. (123 broodstock) Up to 100% of total handled may be removed, killed, or transported as described in the HGMP (37 stray KO and 11 A.O. DIPs)
Hatchery-origin jacks	Capture, handle, tag, tissue sample, remove for transport, holding, and outplanting in the Tucannon River, use for broodstock, remove for adult management or release live animal (pass above weir).	Tucannon River adult weir and Lyons Ferry Hatchery ladder ^a	500 (61)	Up to 135 (more may be passed to mimic natural- origin jack proportions, with NMFS concurrence) (passed live with fin- clip or operculum punch) (1 passed upstream) (58 outplanted)	Up to 9 broodstock. (0) Up to 100% of remainder may be removed, transported, or killed for jack management as described in the HGMP (1 stray KO and 1 A.O. DIP)
Hatchery-origin egg & juveniles	Capture, handle, tag, tissue sample, and release live animal (within hatchery sampling, and research use).	Tucannon Hatchery or Lyons Ferry Hatchery total	280,125 (212,973 BY18) (Maximum eggs/juveniles on hand annually prior to any juvenile rearing loss)	280,125 154,939 BY17 CWT 14,956 BY16 PIT tagged	Up to 55,125 total rearing mortality (3,658 BY17) (9,352 BY18)
Hatchery-origin juveniles	Capture, sample, kill (fish health examinations)	Tucannon Hatchery or Lyons Ferry Hatchery total	170 (50)	170 (0)	170 (50)

^a In years when returns to Tucannon Hatchery are low, adult Chinook arriving at Lyons Ferry Hatchery ladder that are identifiable as Tucannon River hatchery adults may be taken for broodstock.

^b The actual number taken annually will be subject to the sliding scale in the HGMP, in addition to fish that are collected, held, and used for adult outplants in the Tucannon, but may die while holding, or be used as part of the broodstock, and shall not exceed the totals of each origin identified there.

Appendix A. Table 3. NOAA Terms and Conditions	Biological Opinion reporting requirements for						
Tucannon River spring Chinook.							
Metric of Interest	Location within Report						
Number and composition of broodstock, dates of collection,	Appendix B.						
and number that die.							
Numbers, pounds, CV, dates, location, and tag/mark	Table 19; Appendix G.						
information of hatchery released fish from Curl Lake, with							
precocial maturation rates.							
Survival rates of Tucannon hatchery-origin fish life stages.	Tables 23 and 24.						
Disease occurrence at Lyons Ferry Hatchery, Tucannon	Pages 8 and 32.						
Hatchery, and Curl Lake AP.							
The number of returning hatchery and natural-origin adults	Page 22; Table 12; Figure 4; Appendix C.						
and age structure.							
Distribution of hatchery and natural-origin spawners.	Table 7.						
pHOS, pNOB, and PNI for the Tucannon River program.	Appendix I.						
Survival rates of natural-origin fish.	Tables 22 and 24.						
Smolt-to-adult survival rate (hatchery and natural-origin fish.	Tables 25 and 26.						
The contribution of spring Chinook from this program into	Table 28.						
other populations (2005 to 2015 brood years).							
The contribution of spring Chinook from other programs into	Page 28; Table 16; Appendix E.						
the Tucannon River.							
Post release out-of-basin migration timing (median travel	Table 21.						
time and speed) of juvenile hatchery-origin fish to Lower							
Monumental Dam.							
Mean length, coefficient of variation, number, and age of	Pages 33 to 35.						
natural-origin juveniles.							
Any problems that may have arisen during hatchery	None.						
activities.							
Any unforeseen effects on listed fish.	None.						

Appendix B: Spring Chinook Captured, Transported to Lyons Ferry Hatchery, or Passed Upstream at the Tucannon Hatchery Trap in 2018

Appendix B. Spring Chinook salmon captured, transported to Lyons Ferry Hatchery, or passed upstream at the Tucannon Hatchery trap in 2018. (Trapping began in February; last day of trapping was September 30).

	Capture	ed in Trap	Collected for Broodstock		Passed U	Passed Upstream		at LFH ^a	Killed Outright ^b	
Date	Natural	Hatchery	Natural	Hatchery	Natural	Hatchery	Natural	Hatchery		Hatchery
5/24		2		1				1		
5/25	1		1							
5/29	12		11				1			
5/30	4		4							
6/01	5		5							
6/04	2	10	2	9				1		
6/05		6		4				2		
6/06	2	3	1	2			1	1		
6/07	2	14	2	13				1		
6/08	1	11	1	9				2		
6/10	3	11	2	10			1	1		
6/11	1	4	1	3				1		
6/12	_	3	_	1				1		1
6/14	3	33	3	20				12		1
6/15	7	38	6	20			1	14		4
6/16	5	22	5	11			1	11		
6/18	1	37		24			1	12		1
6/19	1	9	2				1 3	8		1
6/20	5	17	2				3	16		1
6/21 6/22	1	16 20	1 3				3	15 17		1 3
6/23	6 5	20 27	3 1				3 4	20		3 7
6/24	2	7	1				1	4		3
6/25	2	14	1				1	8		6
6/26		7						4		3
6/27		5						5		3
6/29	3	5	2				1	5		
7/02	3	5	2				1	4		1
7/06	1	2					1	2		1
7/09	1	2					1	2		
7/13	•	3					-	3		
7/19	1	_					1	_		
7/31		2				1				1
8/22	1	2			1					2
8/24		2								2
8/28	3	1			3	1				
8/29	1	1			1	1				
8/31	1				1					
9/02	1				1					
9/07	3				3					
9/10	2				2					
9/11	3				3					
Total	90	341	54	127	15	3	21	173	0	38
Final										
Totalc	73	358	37	123	15	3	21	194	0	38

^a These fish were held at Lyons Ferry Hatchery for outplanting back into the river closer to the commencement of spawning.

^b Fin clipped strays that were killed outright at the trap.

^c Corrected numbers after spawning.

Appendix C: Age Composition by Brood Year for Tucannon River Spring Chinook Salmon (1985-2013 BYs)

Appendix C. Age composition by brood year for natural and hatchery origin Tucannon River spring Chinook salmon (1985-2013 BYs). (Number at age is found in Tables 25 and 26).

Brood	N	atural origi	n	H	atchery orig	in
Year	% Age 3	% Age 4	% Age 5	% Age 3	% Age 4	% Age 5
1985	4.85	65.05	30.10	42.22	57.78	0.00
1986	0.43	80.30	19.27	26.02	68.97	5.02
1987	0.00	73.25	26.75	10.67	81.46	7.87
1988	0.60	63.35	36.06	25.71	63.38	10.91
1989	7.84	75.16	16.99	6.22	85.65	8.13
1990	8.51	76.60	14.89	21.43	71.43	7.14
1991	0.00	71.43	28.57	20.00	80.00	0.00
1992	1.24	85.71	13.04	14.47	82.89	2.63
1993	1.13	56.50	42.37	10.87	77.54	11.59
1994	0.00	83.33	16.67	12.50	71.88	15.63
1995	0.00	16.67	83.33	9.04	88.70	2.26
1996	0.00	91.30	8.70	22.26	72.45	5.28
1997	1.77	87.86	10.37	7.39	92.61	0.00
1998	2.32	66.75	30.93	12.23	68.85	18.92
1999	6.38	87.94	5.67	33.33	57.58	9.09
2000	0.67	87.50	11.83	16.56	83.44	0.00
2001	0.00	95.72	4.28	14.96	84.25	0.79
2002	1.42	63.21	35.38	4.96	81.82	13.22
2003	4.05	66.47	29.48	2.82	91.55	5.63
2004	2.01	88.22	9.77	15.00	81.67	3.33
2005	17.73	80.51	1.76	42.17	57.83	0.00
2006	6.74	80.76	12.50	35.83	60.52	3.65
2007	6.72	74.75	18.52	28.35	65.52	6.13
2008	9.62	78.39	11.99	41.84	57.39	0.78
2009	1.13	89.50	9.37	2.67	97.00	0.33
2010	9.70	85.18	5.12	34.02	58.25	7.73
2011	5.64	85.14	9.22	8.64	88.16	3.20
2012	30.52	69.48	0.00	36.36	61.46	2.17
2013	11.59	86.96	1.45	32.23	67.77	0.00
Means	5.92	79.76	14.32	24.35	70.55	5.10

Appendix D: Total Estimated Run-Size of Tucannon River Spring Chinook Salmon (1985-2018)

Appendix D. Total estimated run-size of spring Chinook salmon to the Tucannon River, 1985-2018. (Includes breakdown of conventional hatchery supplementation, captive brood progeny, and stray hatchery

components).

Year Jacks Adults Jacks Adults Jacks Adults Jacks Adults Natural Hatchery Run 1985 <td< th=""><th>compo</th><th>nents). Natural</th><th>Natural</th><th>Hatchary</th><th>Hatchary</th><th>C.B.</th><th>C.B.</th><th>Stray</th><th>Stray</th><th>Total</th><th>Total</th><th>Total</th></td<>	compo	nents). Natural	Natural	Hatchary	Hatchary	C.B.	C.B.	Stray	Stray	Total	Total	Total
1985	Vear											
1986												
1987 582 0 582 1988 19 391 19 410 19 429 1989 2 334 83 26 336 109 445 1990 0 493 19 220 0 14 493 253 746 1991 3 257 99 161 0 0 260 260 520 1992 12 379 13 258 0 10 391 281 672 1993 8 296 6 221 0 0 2 304 229 533 1994 0 98 5 37 0 0 21 33 54												
1988 19 391 19 410 19 429 1989 2 334 83 26 336 109 445 1990 0 493 19 220 0 14 493 253 746 1991 3 257 99 161 0 0 260 260 520 1992 12 379 13 258 0 10 391 281 672 1993 8 296 6 221 0 0 2 304 229 533 1994 0 98 5 37 0 0 21 33 54 140 1995 2 19 11 22 0 0 <td></td>												
1989 2 334 83 26 336 109 445 1990 0 493 19 220 0 14 493 253 746 1991 3 257 99 161 0 0 260 260 520 1992 12 379 13 258 0 10 391 281 672 1993 8 296 6 221 0 0 98 42 140 1995 2 19 11 22 0 0 98 42 140 1995 2 19 11 22 0 0 21 33 54 1996 2 140 15 63 0 9 121												
1990 0 493 19 220 0 14 493 253 746 1991 3 257 99 161 0 0 260 260 520 1992 12 379 13 258 0 10 391 281 672 1993 8 296 6 221 0 2 304 229 533 1994 0 98 5 37 0 0 98 42 140 1995 2 19 11 22 0 0 21 33 54 1996 2 140 15 63 0 0 8 5 55 140 1997 0 121 4 109 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
1991 3 257 99 161 0 0 260 260 520 1992 12 379 13 258 0 10 391 281 672 1993 8 296 6 221 0 2 304 229 533 1994 0 98 5 37 0 0 98 42 140 1995 2 19 11 22 0 0 21 33 54 1996 2 140 15 63 0 3 142 81 223 1997 0 121 4 109 0 9 121 122 243 1998 0 85 16 39 0 9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
1993 8 296 6 221 0 2 304 229 533 1994 0 98 5 37 0 0 98 42 140 1995 2 19 11 22 0 0 21 33 54 1996 2 140 15 63 0 3 142 81 223 1997 0 121 4 109 0 9 121 122 243 1998 0 85 16 39 0 0 85 55 140 1999 0 3 59 162 5 15 3 241 244 2000 14 68 13 196 5 41 82 <td></td>												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
1995 2 19 11 22 0 0 21 33 54 1996 2 140 15 63 0 3 142 81 223 1997 0 121 4 109 0 9 121 122 243 1998 0 85 16 39 0 0 85 55 140 1999 0 3 59 162 5 15 3 241 244 2000 14 68 13 196 5 41 82 255 337 2001 9 701 97 177 13 0 710 287 997 2002 9 341 11 546 0 97 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
1996 2 140 15 63 0 3 142 81 223 1997 0 121 4 109 0 9 121 122 243 1998 0 85 16 39 0 0 85 55 140 1999 0 3 59 162 5 15 3 241 244 2000 14 68 13 196 5 41 82 255 337 2001 9 701 97 177 13 0 710 287 997 2002 9 341 11 546 1 0 247 196 443 2004 0 400 19 134 3 0 0 16 <												
1997 0 121 4 109 0 9 121 122 243 1998 0 85 16 39 0 0 85 55 140 1999 0 3 59 162 5 15 3 241 244 2000 14 68 13 196 5 41 82 255 337 2001 9 701 97 177 13 0 710 287 997 2002 9 341 11 546 0 97 350 654 1,004 2003 3 244 26 169 1 0 247 196 443 2004 0 400 19 134 3 0 0 16												
1998 0 85 16 39 0 0 85 55 140 1999 0 3 59 162 5 15 3 241 244 2000 14 68 13 196 5 41 82 255 337 2001 9 701 97 177 13 0 710 287 997 2002 9 341 11 546 0 97 350 654 1,004 2003 3 244 26 169 1 0 247 196 443 2004 0 400 19 134 3 0 0 16 400 172 572 2005 3 299 6 107 0 14 2 4												
1999 0 3 59 162 5 15 3 241 244 2000 14 68 13 196 5 41 82 255 337 2001 9 701 97 177 13 0 710 287 997 2002 9 341 11 546 0 97 350 654 1,004 2003 3 244 26 169 1 0 247 196 443 2004 0 400 19 134 3 0 0 16 400 172 572 2005 3 299 6 107 0 14 2 4 302 133 435 2006 7 145 2 100 2 2 0 8												
2000 14 68 13 196 5 41 82 255 337 2001 9 701 97 177 13 0 710 287 997 2002 9 341 11 546 0 97 350 654 1,004 2003 3 244 26 169 1 0 247 196 443 2004 0 400 19 134 3 0 0 16 400 172 572 2005 3 299 6 107 0 14 2 4 302 133 435 2006 7 145 2 100 2 2 0 8 152 114 266 2007 8 190 18 81 0 19 15 13												
2001 9 701 97 177 13 0 710 287 997 2002 9 341 11 546 0 97 350 654 1,004 2003 3 244 26 169 1 0 247 196 443 2004 0 400 19 134 3 0 0 16 400 172 572 2005 3 299 6 107 0 14 2 4 302 133 435 2006 7 145 2 100 2 2 0 8 152 114 266 2007 8 190 18 81 0 19 15 13 198 146 344 2008 131 403 291 102 158 82 23 1												
2002 9 341 11 546 0 97 350 654 1,004 2003 3 244 26 169 1 0 247 196 443 2004 0 400 19 134 3 0 0 16 400 172 572 2005 3 299 6 107 0 14 2 4 302 133 435 2006 7 145 2 100 2 2 0 8 152 114 266 2007 8 190 18 81 0 19 15 13 198 146 344 2008 131 403 291 102 158 82 23 1 534 657 1,191 2009 116 634 402 403 92 196 13 4												
2003 3 244 26 169 1 0 247 196 443 2004 0 400 19 134 3 0 0 16 400 172 572 2005 3 299 6 107 0 14 2 4 302 133 435 2006 7 145 2 100 2 2 0 8 152 114 266 2007 8 190 18 81 0 19 15 13 198 146 344 2008 131 403 291 102 158 82 23 1 534 657 1,191 2009 116 634 402 403 92 196 13 4 750 1,110 1,860 2010 41 1,402 74 679 0 306 4 17 <td></td>												
2004 0 400 19 134 3 0 0 16 400 172 572 2005 3 299 6 107 0 14 2 4 302 133 435 2006 7 145 2 100 2 2 0 8 152 114 266 2007 8 190 18 81 0 19 15 13 198 146 344 2008 131 403 291 102 158 82 23 1 534 657 1,191 2009 116 634 402 403 92 196 13 4 750 1,110 1,860 2010 41 1,402 74 679 0 306 4 17 1,443 1,080 2,523 2011 85 671 269 212 0 27 12 <t< td=""><td></td><td>9</td><td></td><td>11</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></t<>		9		11				0				
2005 3 299 6 107 0 14 2 4 302 133 435 2006 7 145 2 100 2 2 0 8 152 114 266 2007 8 190 18 81 0 19 15 13 198 146 344 2008 131 403 291 102 158 82 23 1 534 657 1,191 2009 116 634 402 403 92 196 13 4 750 1,110 1,860 2010 41 1,402 74 679 0 306 4 17 1,443 1,080 2,523 2011 85 671 269 212 0 27 12 24 756 544 1,300 2012 7 806 8 385 0								1	0			
2006 7 145 2 100 2 2 0 8 152 114 266 2007 8 190 18 81 0 19 15 13 198 146 344 2008 131 403 291 102 158 82 23 1 534 657 1,191 2009 116 634 402 403 92 196 13 4 750 1,110 1,860 2010 41 1,402 74 679 0 306 4 17 1,443 1,080 2,523 2011 85 671 269 212 0 27 12 24 756 544 1,300 2012 7 806 8 385 0 29 813 422 1,235 2013 91 660 66 296 2 <td></td> <td></td> <td></td> <td>19</td> <td></td> <td>3</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td>				19		3	0					
2007 8 190 18 81 0 19 15 13 198 146 344 2008 131 403 291 102 158 82 23 1 534 657 1,191 2009 116 634 402 403 92 196 13 4 750 1,110 1,860 2010 41 1,402 74 679 0 306 4 17 1,443 1,080 2,523 2011 85 671 269 212 0 27 12 24 756 544 1,300 2012 7 806 8 385 0 29 813 422 1,235 2013 91 660 66 296 2 0 751 364 1,115 2014 41 857 62 114	2005		299						4	302	133	435
2008 131 403 291 102 158 82 23 1 534 657 1,191 2009 116 634 402 403 92 196 13 4 750 1,110 1,860 2010 41 1,402 74 679 0 306 4 17 1,443 1,080 2,523 2011 85 671 269 212 0 27 12 24 756 544 1,300 2012 7 806 8 385 0 29 813 422 1,235 2013 91 660 66 296 2 0 751 364 1,115 2014 41 857 62 114 0 12 898 188 1,086 2015 65 667 184 648										152		
2009 116 634 402 403 92 196 13 4 750 1,110 1,860 2010 41 1,402 74 679 0 306 4 17 1,443 1,080 2,523 2011 85 671 269 212 0 27 12 24 756 544 1,300 2012 7 806 8 385 0 29 813 422 1,235 2013 91 660 66 296 2 0 751 364 1,115 2014 41 857 62 114 0 12 898 188 1,086 2015 65 667 184 648 6 207 732 1,045 1,777 2016 8 215 120 335	2007	8	190	18	81	0	19	15	13	198	146	344
2010 41 1,402 74 679 0 306 4 17 1,443 1,080 2,523 2011 85 671 269 212 0 27 12 24 756 544 1,300 2012 7 806 8 385 0 29 813 422 1,235 2013 91 660 66 296 2 0 751 364 1,115 2014 41 857 62 114 0 12 898 188 1,086 2015 65 667 184 648 6 207 732 1,045 1,777 2016 8 215 120 335 12 62 223 529 752 2017 9 60 140 257 19 27 69 443 512	2008	131		291		158	82	23	1		657	
2011 85 671 269 212 0 27 12 24 756 544 1,300 2012 7 806 8 385 0 29 813 422 1,235 2013 91 660 66 296 2 0 751 364 1,115 2014 41 857 62 114 0 12 898 188 1,086 2015 65 667 184 648 6 207 732 1,045 1,777 2016 8 215 120 335 12 62 223 529 752 2017 9 60 140 257 19 27 69 443 512	2009	116	634	402	403	92	196	13	4	750	1,110	1,860
2012 7 806 8 385 0 29 813 422 1,235 2013 91 660 66 296 2 0 751 364 1,115 2014 41 857 62 114 0 12 898 188 1,086 2015 65 667 184 648 6 207 732 1,045 1,777 2016 8 215 120 335 12 62 223 529 752 2017 9 60 140 257 19 27 69 443 512	2010	41	1,402	74	679	0	306	4	17	1,443	1,080	2,523
2013 91 660 66 296 2 0 751 364 1,115 2014 41 857 62 114 0 12 898 188 1,086 2015 65 667 184 648 6 207 732 1,045 1,777 2016 8 215 120 335 12 62 223 529 752 2017 9 60 140 257 19 27 69 443 512	2011	85	671	269	212	0	27	12	24	756	544	1,300
2014 41 857 62 114 0 12 898 188 1,086 2015 65 667 184 648 6 207 732 1,045 1,777 2016 8 215 120 335 12 62 223 529 752 2017 9 60 140 257 19 27 69 443 512	2012	7	806	8	385			0	29	813	422	1,235
2015 65 667 184 648 6 207 732 1,045 1,777 2016 8 215 120 335 12 62 223 529 752 2017 9 60 140 257 19 27 69 443 512	2013	91	660	66	296			2	0	751	364	1,115
2016 8 215 120 335 12 62 223 529 752 2017 9 60 140 257 19 27 69 443 512	2014	41	857	62	114			0	12	898	188	1,086
2016 8 215 120 335 12 62 223 529 752 2017 9 60 140 257 19 27 69 443 512	2015	65	667	184	648			6	207	732	1,045	1,777
2017 9 60 140 257 19 27 69 443 512												
2010 0 00 37 310 1 107 00 403 343	2018	0	80	39	316			1	109	80	465	545

Appendix E: Stray Hatchery-Origin Spring Chinook Salmon in the Tucannon River (1990-2018)

Appendix E. Summary of identified stray hatchery origin spring Chinook salmon that escaped into the $Tucannon\ River\ (1990-2018)$.

Year	CWT Code or Fin clip	Agency	Origin (stock)	Release Location / Release River	Number Observed/ Expanded ^a	% of Tuc. Run
1990	074327	ODFW	Carson (Wash.)	Meacham Cr./Umatilla River	2/5	
	074020	ODFW	Rapid River	Lookingglass Cr./Grande Ronde	1 / 2	
	232227	NMFS	Mixed Col.	Columbia River/McNary Dam	2/5	
	232228	NMFS	Mixed Col.	Columbia River/McNary Dam	1 / 2	
				Total Strays	14	1.9
1992	075107	ODFW	Lookingglass Cr.	Bonifer Pond/Umatilla River	2 / 6	
	075111	ODFW	Lookingglass Cr.	Meacham Cr./Umatilla River	1 / 2	
	075063	ODFW	Lookingglass Cr.	Meacham Cr./Umatilla River	1 / 2	
				Total Strays	10	1.3
1993	075110	ODFW	Lookingglass Cr.	Meacham Cr./Umatilla River	1 / 2	
				Total Strays	2	0.3
1996	070251	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	1 / 1	
	LV clip	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	1 / 2	
				Total Strays	3	1.3
1997	103042	IDFG	South Fork Salmon	Knox Bridge/South Fork Salmon	1 / 2	
	103518	IDFG	Powell	Powell Rearing Ponds/Lochsa R.	1 / 2	
	RV clip	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	3 / 5	
				Total Strays	9	2.6
1999	091751	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	2/3	
	092258	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	1 / 1	
	104626	UI	Eagle Creek NFH	Eagle Creek NFH/Clackamas R.	1 / 1	
	LV clip	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	2/2	
	RV clip	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	8 / 13	
				Total Strays	20	8.2
2000	092259	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	4 / 4	
	092260	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	1 / 1	
	092262	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	1 / 3	
	105137	IDFG	Powell	Walton Creek/Lochsa R.	1 / 3	
	636330	WDFW	Klickitat (Wash.)	Klickitat Hatchery	1 / 1	
	636321	WDFW	Lyons Ferry (Wash.)	Lyons Ferry/Snake River	1 / 1	
	LV clip	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	18 / 31	
	Ad clip	ODFW	Carson (Wash.)	Imeques AP/Umatilla River	2/2	
	-			Total Strays	46	13.6
2001	076040	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/7	
	092828	ODFW	Imnaha R. & Tribs.	Lookingglass/Imnaha River	1/3	
	092829	ODFW	Imnaha R. & Tribs.	Lookingglass/Imnaha River	1/3	
				Total Strays	13	1.3

^a The expansion is based on subsample rates of the proportion of stray carcasses to Tucannon River origin carcasses from the river. Actual counts are not expanded.

Appendix E (continued). Summary of identified stray hatchery origin spring Chinook salmon that escaped into the Tucannon River (1990-2018).

Year	CWT Code or Fin clip	Agency	Origin (stock)	Release Location / Release River	Number Observed/ Expanded ^a	% of Tuc. Run
2002	054208	USFWS	Dworshak	Dworshak NFH/Clearwater R.	1/29	
	076039	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/8	
	076040	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	2/16	
	076041	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	2/16	
	076049	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/8	
	076051	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/8	
	076138	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/8	
	105412	IDFG	Powell	Clearwater Hatch./Powell Ponds	1/4	
				Total Strays	97	9.7
2003	100472	IDFG	Salmon R.	Sawtooth Hatch./Nature's Rear.	1/1	
				Total Strays	1	0.2
2004	Ad clip	Unknown	Unknown	Unknown	6/17	
	•			Total Strays	17	3.0
2005	Ad clip	Unknown	Unknown	Unknown	3/6	
	1			Total Strays	6	1.4
2006	109771	IDFG	Sum. Ch S Fk Sal.	McCall Hatch./S. Fk. Salmon R.	1/1	
	093859	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/1	
	Ad clip	Unknown	Unknown	Unknown	3/6	
	1			Total Strays	8	3.2
2007	092043	ODFW	Rogue R. – Cole H.	Cole Rivers Hatchery/Rogue R.	1/1	
	Ad clip	Unknown	Unknown	Unknown	9/27	
	1			Total Strays	28	8.1
2008	092045	ODFW	Rogue R. – Cole H.	Cole Rivers Hatchery/Rogue R.	1/1	
	094358	ODFW	Grande Ronde R.	Lookingglass/Grande Ronde R.	1/11	
	094460	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/11	
	Ad clip	Unknown	Unknown	Unknown	1/1	
	1			Total Strays	24	2.0
2009	092043	ODFW	Rogue R.	Cole Rivers Hatch./Rogue R.	1/3	
	094532	ODFW	Imnaha R.	Lookingglass Hatch./Imnaha R.	1/3	
	094538	ODFW	Lostine R.	Lookingglass/Lostine R.	2/4	
	100181	IDFG	Salmon R. Sum. Ck.	Knox Bridge/S. Fork Salmon	1/1	
	Ad clip	Unknown	Unknown	Unknown	6/6	
	· · · · · · · · · · · · · · · · · · ·			Total Strays	17	0.9
2010	092737	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/6	
2010	094351	ODFW	Lostine R.	Lookingglass/Lostine R.	1/6	
	Ad clip	Unknown	Unknown	Unknown	9/9	
	ria enp	Cindiowii	CHRIOWH	Total Strays	21	0.8
2011	054685	USFWS	Dworshak	Dworshak Hatchery	1/1	0,0
2011	094591	ODFW	Catherine Ck.	Lookingglass Hatchery	2/2	
	094593	ODFW	Lookingglass Ck.	Lookingglass Hatchery	1/1	
	094595	ODFW	Lostine R.	Lookingglass Hatchery	1/6	
	101381	IDFG	Clear Ck.	Clearwater Hatchery/Powell	1/6	
	101381	IDFG	S.F. Clearwater	Clearwater Hatchery	1/6	
	102380	IDFG	Selway R.	Clearwater Hatchery/Powell	1/6	
	102001	טיועו		<u> </u>		
	Ad clip	Unknown	Unknown	Unknown	3/8	

^a The expansion is based on subsample rates of the proportion of stray carcasses to Tucannon River origin carcasses from the river. Actual counts are not expanded.

Appendix E (continued). Summary of identified stray hatchery origin spring Chinook salmon that escaped into the Tucannon River (1990-2018).

Year	CWT Code or Fin clip	Agency	Origin (stock)	Release Location / Release River	Number Observed/ Expanded ^a	% of Tuc. Run
2012	Ad clip	Unknown	Unknown	Unknown	9/29	
				Total Strays	29	2.3
2013	Ad clip	Unknown	Unknown	Unknown	2/2	
	-			Total Strays	2	0.2
2014	090471	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/1	
	090485	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/1	
	090282	ODFW	Lostine R.	Lookingglass/Lostine R.	1/11	
				Total Strays	13	1.2
2015	090552	ODFW	Imnaha R.	Lookingglass/Imnaha R.	1/14	
	090643	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	6/19	
	090652	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	15/123	
	090729	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	3/3	
	Ad clip	Unknown	Unknown	Unknown	28/54	
	•			Total Strays	213	12.0
2016	090861	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/4	
	090719	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	12/31	
	090729	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	2/2	
	090733	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/4	
	220134	NPT	Clearwater Mix	NPT Hatchery	1/4	
	090652	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	2/2	
	Ad clip	Unknown	Unknown	Unknown	24/27	
	•			Total Strays	74	9.8
2017	090910	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	1/1	
	090918	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	2/6	
	090861	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	2/6	
	190418	Yakama	Yakima R.	Cle Elum Hatch./Yakima River	1/5	
	Ad clip	Unknown	Unknown	Unknown	17/28	
	-			Total Strays	46	9.0
2018	090903	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	2/2	
	090910	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	3/9	
	090918	ODFW	Umatilla R.	Umatilla Hatch./Umatilla River	5/15	
	Ad clip	Unknown	Unknown	Unknown	47/84	
	-			Total Strays	110	20.2

The expansion is based on subsample rates of the proportion of stray carcasses to Tucannon River origin carcasses from the river. Actual counts are not expanded.

Appendix F:	Final PIT Tag Detections of Returning
Tuc	annon River Spring Chinook

Appendix F. Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

]	Release Da	nta	A	Adult Return Final Detection Data ^a				
		Length	Release						
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age		
1F4E71071B	Н	169	3/20/95	LGR	8/03/95	136	2		
5042423B61	Н	139	3/25/97	LGR	5/29/99	795	4		
50470F3608	Н	142	3/25/97	LGR	6/17/99	814	4		
517D1E0552	W	112	4/22/99	BON	4/17/01	726	4		
5202622F42	W	110	4/22/99	BON	4/19/01	728	4		
517D1A197C	W	118	4/22/99	LGR	4/21/01	730	4		
5176172874	W	108	4/29/99	LGR	4/29/01	731	4		
5200712827	W	103	4/29/99	LGR	5/12/02	1109	5		
5177201601	Н	151	5/6/99	LGR	5/31/01	756	4		
517D22216B	Н	137	5/12/99	LGR	5/15/01	734	4		
3D9.1BF1693290	Н	130	5/07/02	LGR	5/23/04	747	4		
3D9.1BF1677795	W	117	4/29/02	LGR	5/19/04	751	4		
3D9.1BF16876C6	W	105	4/30/02	ICH	5/04/05	1100	5		
3D9.1BF167698F	W	96	5/02/02	ICH	5/03/05	1097	5		
3D9.1BF12F6891	Н	136	4/21/03	ICH	5/09/04	392	3		
3D9.1BF12F7182	Н	115	4/21/03	ICH	5/19/04	396	3		
3D9.1BF149E5EA	Н	126	4/21/03	MCN	5/05/05	751	4		
3D9.1BF1A2EF4B	W	104	12/07/05	LGR	6/16/08	922	5		
3D9.257C5B558A	Н	125	4/26/06	ICH	6/16/08	782	4		
3D9.257C5A0975	W	113	11/20/06	MCN	5/29/09	921	5		
3D9.1BF26E119D	Н	170	4/12/07	LTR	5/22/08	406	3		
3D9.257C6C4BAD	СВ	142	4/12/07	ICH	5/15/08	399	3		
3D9.257C6C1B20	СВ	148	4/12/07	LTR	5/31/08	415	3		
3D9.257C6C57DF	СВ	125	4/12/07	ICH	5/31/08	415	3		
3D9.1BF26D389C	W	114	4/24/07	LTR	5/27/08	400	3		
3D9.1BF26DB184	W	106	4/24/07	BON	5/02/09	739	4		
3D9.1BF26DB741	W	118	4/24/07	ICH	5/10/09	747	4		
3D9.1BF26DA2CB	W	103	4/23/07	ICH	5/10/09	748	4		
3D9.1BF26D340D	W	102	4/16/07	ICH	5/06/09	751	4		
3D9.1BF26D39F9	W	110	4/24/07	ICH	5/15/09	752	4		
3D9.1BF26D693A	Н	144	4/12/07	ICH	5/08/09	757	4		
3D9.1BF26DFD75	Н	112	4/12/07	MCN	5/11/09	760	4		
3D9/257C6C514A	СВ	125	4/12/07	ICH	5/17/09	766	4		
3D9.1BF26DF8E5	W	118	4/02/07	ICH	5/09/09	768	4		
3D9.1BF26DEE22	W	115	4/15/07	MCN	5/24/09	769	4		
3D9.257C59FC64	W	116	3/22/07	ICH	5/17/09	787	4		

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

]	Release Da	ıta	Ac	dult Return Fi	nal Detection D	ata ^a
		Length	Release				
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3D9.257C5BF3CB	W	95	1/16/07	BON	4/11/09	816	4
3D9.1BF27DF007	Н		4/15/08	LTR^b	7/08/08	84	2
3D9.1BF27E6923	Н		4/15/08	MCN	5/11/09	391	3
3D9.1BF27E6615	Н		4/15/08	ICH	5/12/09	392	3
3D9.1BF27E396B	Н	144	4/15/08	ICH	5/14/09	394	3
3D9.1BF27E5152	Н		4/15/08	MCN	5/14/09	394	3
3D9.1BF27DFA43	Н	136	4/15/08	ICH	5/14/09	394	3
3D9.1BF27E45D5	Н		4/15/08	BON	5/14/09	394	3
3D9.1BF27E5420	Н		4/15/08	ICH	5/15/09	395	3
3D9.1BF27DC33A	Н		4/15/08	MCN	5/16/09	395	3
3D9.1C2C4A2C09	CB		4/15/08	ICH	5/16/09	396	3
3D9.1BF27E0BF9	Н	174	4/15/08	ICH	5/20/09	400	3
3D9.1BF27E4A9A	Н		4/15/08	BON	5/21/09	401	3
3D9.1BF27DDDE3	Н	125	4/15/08	ICH	5/21/09	401	3
3D9.1BF27E5F9D	Н		4/15/08	MCN	5/23/09	403	3
3D9.1C2C4A17EF	CB		4/15/08	ICH	5/29/09	409	3
3D9.1C2C4AC01A	CB		4/15/08	ICH	5/13/09	393	3
3D9.1BF27E6750	Н		4/15/08	LGR	6/07/09	418	3
3D9.1BF27E0B48	Н		4/15/08	LGR	6/19/09	430	3
3D9.1BF27E335D	Н	112	4/15/08	LGR	6/21/09	432	3
3D9.1BF27DEBAF	Н		4/15/08	ICH	5/30/09	410	3
3D9.1BF27DE680	Н	209	4/15/08	ICH	5/13/09	393	3
3D9.1BF27C49AC	W	120	4/02/08	ICH	6/10/09	434	3
3D9.1BF27C15D9	W	103	4/07/08	BON	4/29/10	752	4
3D9.1BF27C3C06	W	112	3/31/08	MCN	4/26/10	756	4
3D9.1BF27C3C7F	W	108	4/11/08	ICH	5/13/10	762	4
3D9.1BF27C4002	W	121	3/31/08	ICH	6/15/10	806	4
3D9.1BF27C43BD	W	104	3/31/08	LTR	5/06/10	766	4
3D9.1BF27C47C9	W	120	4/30/08	LTR	4/11/10	712	4
3D9.1BF27C4C13	W	113	4/08/08	LTR	4/27/10	747	4
3D9.1BF27C5838	W	120	4/04/08	ICH	5/06/10	762	4
3D9.1BF27C6137	W	105	4/20/08	LTR	5/01/10	741	4
3D9.1BF27C67B1	W	105	4/26/08	ICH	5/12/10	746	4
3D9.1BF27C681F	W	105	3/31/08	ICH	4/30/10	760	4
3D9.1BF27CEC4F	W	106	4/14/08	LGR	5/14/10	760	4
3D9.1BF27CF786	W	109	4/26/08	ICH	5/22/10	756	4

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TELL.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

		Release Da	ıta	Ac	dult Return Fi	nal Detection D	ata ^a
		Length	Release				
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1BF27DD7AC	W	101	5/04/08	ICH	5/23/10	736	4
3D9.1BF27DE7AE	W	121	5/28/08	LTR	5/02/10	705	4
3D9.1BF27E114D	W	98	4/30/08	ICH	5/07/10	737	4
3D9.1BF27E3670	W	120	5/12/08	ICH	5/05/10	723	4
3D9.1BF27E3A3B	W	105	5/01/08	BON	4/30/10	729	4
3D9.1BF27E4969	W	111	5/02/08	ICH	5/18/10	746	4
3D9.1BF27E5ADF	W	108	4/30/08	ICH	5/15/10	745	4
3D9.1BF27E6A2A	W	103	5/15/08	LTR	5/09/10	725	4
3D9.1BF27E806F	W	119	5/27/08	ICH	5/07/10	710	4
3D9.1BF27EA280	W	102	5/04/08	LTR	5/06/10	732	4
3D9.1BF27EC355	W	111	5/03/08	ICH	5/16/10	744	4
3D9.1C2C87304F	W	96	4/20/08	BON	4/28/10	738	4
3D9.1C2C875C89	W	115	4/18/08	MCN	5/08/10	750	4
3D9.1C2C87D02B	W	110	4/18/08	ICH	5/09/10	746	4
3D9.1C2C87D789	W	99	4/20/08	MCN	5/01/10	742	4
3D9.1C2C9CA1D0	W	115	4/22/08	BON	4/25/10	734	4
3D9.1C2CA9921E	W	109	4/22/08	LGR	5/23/10	761	4
3D9.1C2CA9B076	W	118	4/21/08	BON	4/25/10	734	4
3D9.1BF27DBF36	Н		4/15/08	LTR	5/09/10	754	4
3D9.1BF27DE0CD	Н		4/15/08	BON	4/29/10	744	4
3D9.1BF27E0336	Н		4/15/08	ICH	5/15/10	760	4
3D9.1BF27E196E	Н		4/15/08	ICH	5/01/10	746	4
3D9.1BF27E3B75	Н		4/15/08	ICH	4/22/10	737	4
3D9.1BF27E55A0	Н	135	4/15/08	ICH	5/24/10	769	4
3D9.1BF27E8ADF	Н		4/15/08	BON	4/25/10	740	4
3D9.1BF27EBB28	Н	113	4/15/08	LTR	5/26/10	771	4
3D9.1BF27ECB41	Н	124	4/15/08	ICH	5/14/10	759	4
3D9.1BF27ED02D	Н		4/15/08	BON	5/09/10	754	4
3D9.1BF27E53AA	Н	123	4/15/08	LTR	6/05/10	781	4
3D9.1BF27E5A15	Н		4/15/08	ICH	5/19/10	764	4
3D9.1BF27E9E98	Н		4/15/08	MCN	4/23/10	738	4
3D9.1BF27EAC50	Н		4/15/08	LTR	5/05/10	750	4
3D9.1BF27EAD0A	Н	153	4/15/08	ICH	5/10/10	755	4
3D9.1BF27E4C02	Н		4/15/08	ICH	5/12/10	757	4
3D9.1BF27E172D	Н		4/15/08	BON	4/21/10	736	4
3D9.1BF27E066A	Н		4/15/08	LGR	5/24/10	768	4

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

]	Release Da	nta	Ac	dult Return Fi	nal Detection D	ata ^a
		Length	Release				
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1BF27E0720	Н	131	4/15/08	LGR	5/17/10	744	4
3D9.1BF27E0425	Н		4/15/08	BON	4/28/10	743	4
3D9.1BF27E050F	Н		4/15/08	MCN	4/26/10	741	4
3D9.1BF27DF85C	Н		4/15/08	LTR	6/07/10	783	4
3D9.1BF27DEFC8	Н	124	4/15/08	BON	4/23/10	738	4
3D9.1BF27CF491	Н		4/15/08	LGR	5/19/10	764	4
3D9.1BF27DB43A	Н	131	4/15/08	ICH	5/05/10	750	4
3D9.1BF27DC0B5	Н	138	4/15/08	LTR	4/30/10	745	4
3D9.1BF27DC33F	Н		4/15/08	LTR^b	5/08/10	753	4
3D9.1BF27DEB6D	Н		4/15/08	LTR	5/26/10	771	4
3D9.1C2C455F7C	CB		4/15/08	MCN	5/15/10	760	4
3D9.1C2C48AA85	CB		4/15/08	ICH	5/08/10	753	4
3D9.1C2C4AF06C	CB		4/15/08	LTR	5/05/10	750	4
3D9.1BF27C301A	W	98	4/24/08	LTR^b	5/17/11	1118	5
3D9.1BF27C38CD	W	106	4/25/08	LTR	5/14/11	1114	5
3D9.1BF27C3DD3	W	103	4/17/08	LTR	5/11/11	1119	5
3D9.1BF27C524B	W	110	4/29/08	BON	4/26/11	1092	5
3D9.1BF27C65EB	W	103	4/27/08	ICH	6/16/11	1145	5
3D9.1BF27CDCC9	W	103	4/26/08	ICH	5/07/11	1106	5
3D9.1BF27CF043	W	98	4/01/08	LTR	5/12/11	1136	5
3D9.1BF27E02B6	W	101	5/03/08	BON	4/30/11	1092	5
3D9.1C2C97ECE2	W	103	4/23/08	MCN	5/09/11	1112	5
3D9.1BF27E0E0D	W	112	11/17/08	ICH	5/15/11	909	5
3D9.1BF27E4192	W	113	12/31/08	ICH	5/08/11	858	5
3D9.1BF27E502E	W	102	12/29/08	AFC	6/20/11	903	5
3D9.1BF27E54F2	W	111	11/26/08	MCN	6/30/11	946	5
3D9.1BF27E8A96	W	125	12/31/08	MCN	6/24/11	905	5
3D9.1BF27EB33D	W	111	12/11/08	ICH	5/24/11	893	5
3D9.1BF27EC294	Н	130	4/15/08	MCN	5/07/11	1116	5
3D9.1C2CFD0260	Н		4/17/09	LTR	6/20/10	429	3
3D9.1C2D044E4D	Н		4/17/09	LTR^b	5/30/10	408	3
3D9.1C2D03EA21	Н		4/17/09	ICH	5/18/10	396	3
3D9.1C2CFCCEAF	Н		4/17/09	LTR	6/29/10	438	3
3D9.1C2CF467AE	Н		4/17/09	ICH	5/12/10	390	3
3D9.1C2CFBAFCC	Н		4/17/09	LTR^b	5/24/11	767	4
3D9.1C2CFCD300	Н		4/17/09	BON	5/17/11	760	4

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TELL.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

		Release Da	ata	Ac	dult Return Fi	nal Detection D	ata ^a
		Length	Release				
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2CFD176B	Н		4/17/09	LGR	6/06/11	773	4
3D9.1C2D02834D	Н		4/17/09	LTR	5/20/11	763	4
3D9.1C2D02ACF7	Н	158	4/17/09	LGO ^b	5/17/11	760	4
3D9.1C2D034513	Н		4/17/09	LTR	5/16/11	759	4
3D9.1C2D0357E4	Н	194	4/17/09	LGR	6/21/11	781	4
3D9.1C2D040E6F	Н		4/17/09	ICH	6/02/11	771	4
3D9.1BF27C2A80	W	110	5/02/09	ICH	5/11/11	739	4
3D9.1BF27C32F1	W	116	4/30/09	ICH	6/06/11	767	4
3D9.1BF27C34E2	W	131	5/01/09	ICH	5/17/11	746	4
3D9.1BF27C3AEE	W	114	4/27/09	LTR	5/10/11	743	4
3D9.1BF27C3EE4	W	117	5/10/09	ICH	5/20/11	740	4
3D9.1BF27C51C3	W	117	5/03/09	MCN	5/13/11	740	4
3D9.1BF27C610A	W	125	4/27/09	ICH	5/06/11	739	4
3D9.1BF27C652F	W	122	4/28/09	LTR	5/14/11	746	4
3D9.1BF27C6784	W	105	5/09/09	LTR	5/18/11	739	4
3D9.1BF27CE9F8	W	105	4/29/09	LTR	5/19/11	750	4
3D9.1BF27DB642	W	109	1/20/09	AFC	9/09/11	928	4
3D9.1BF27E20BB	W	99	1/27/09	MCN	5/15/11	838	4
3D9.1BF27E2615	W	128	4/19/09	ICH	6/22/11	794	4
3D9.1BF27EBF86	W	113	1/26/09	BON	5/14/11	838	4
3D9.1C2D031FC6	W	105	11/16/09	LGR	6/21/11	582	4
3D9.1C2CF45F43	W	116	5/19/09	BON	4/24/12	1071	5
3D9.1C2CFCEF10	W	93	12/15/09	MTR	5/28/12	895	5
3D9.1C2CB17349	Н		4/07/10	LTR	5/10/11	398	3
3D9.1C2CFBE7D3	Н		4/07/10	ICH	5/16/11	404	3
3D9.1C2CFCA747	Н		4/07/10	ICH	5/23/11	411	3
3D9.1C2CFCB6E1	Н		4/07/10	ICH	5/24/11	412	3
3D9.1C2D0A57A9	Н		4/07/10	LGR	5/11/11	399	3
3D9.1C2D0C6B10	Н		4/07/10	ICH	5/20/11	408	3
3D9.1C2D0C6EC3	Н		4/07/10	ICH	6/02/11	421	3
3D9.1C2D10D73B	Н		4/07/10	LTR	7/04/11	453	3
3D9.1C2D116974	Н		4/07/10	MCN	5/18/11	406	3
3D9.1C2D11BDED	Н		4/07/10	ICH	5/22/11	410	3
3D9.1C2D1227AC	Н		4/07/10	ICH	5/21/11	409	3
3D9.1C2D74B711	Н		4/07/10	MCN	6/05/11	424	3
3D9.1C2D750B0B	Н		4/07/10	LTR^b	7/05/11	455	3

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2013 for TFH.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

		Release Da	ıta	Ac	dult Return Fi	nal Detection D	ata ^a
		Length	Release				
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2D752277	Н		4/07/10	ICH	6/06/11	425	3
3D9.1C2D754D65	Н		4/07/10	LTR	6/04/11	423	3
3D9.1C2D755233	Н		4/07/10	LGR	6/17/11	436	3
3D9.1C2D7555EA	Н		4/07/10	ICH	5/30/11	418	3
3D9.1C2D755E10	Н		4/07/10	ICH	6/07/11	426	3
3D9.1C2D756572	Н		4/07/10	LTR	6/07/11	426	3
3D9.1C2D7565B1	Н		4/07/10	LTR	6/15/11	434	3
3D9.1C2D756D09	Н		4/07/10	ICH	6/06/11	425	3
3D9.1C2D75B9F9	Н		4/07/10	ICH	6/04/11	423	3
3D9.1C2D75BAC1	Н		4/07/10	BON	5/23/11	411	3
3D9.1C2D75C3CB	Н		4/07/10	LGO^b	7/02/11	451	3
3D9.1C2D75CA67	Н		4/07/10	LTR	6/05/11	425	3
3D9.1C2D7A9C66	Н		4/07/10	MCN	6/08/11	427	3
3D9.1C2D7AB0CD	Н		4/07/10	ICH	6/06/11	425	3
3D9.1C2D7AB2FB	Н		4/07/10	MCN	5/14/11	402	3
3D9.1C2D7ABE87	Н		4/07/10	LTR	5/11/11	399	3
3D9.1C2D7ABEE8	Н		4/07/10	LTR	5/20/11	408	3
3D9.1C2D7ABF15	Н		4/07/10	BON	5/20/11	408	3
3D9.1C2D7AD6C0	Н		4/07/10	ICH	6/16/11	435	3
3D9.1C2D7AF0D6	Н		4/07/10	ICH	5/31/11	419	3
3D9.1C2D7AF13B	Н		4/07/10	BON	5/16/11	404	3
3D9.1C2D7B4C96	Н		4/07/10	BON	5/09/11	397	3
3D9.1C2D7B723E	Н		4/07/10	ICH	5/29/11	417	3
3D9.1C2D7C5759	Н		4/07/10	ICH	5/29/11	417	3
3D9.1C2D80F436	Н		4/07/10	MCN	5/27/11	415	3
3D9.1C2D80FE10	Н		4/07/10	BON	5/19/11	406	3
3D9.1C2D8102EE	Н		4/07/10	BON	5/16/11	404	3
3D9.1C2D8142B7	Н		4/07/10	MCN	6/05/11	424	3
3D9.1C2D8158FB	Н		4/07/10	BON	5/23/11	411	3
3D9.1C2D824F31	Н		4/07/10	LTR	5/18/11	406	3
3D9.1C2CF468D0	W	123	4/17/10	LTR	6/09/11	418	3
3D9.1C2D030B45	W	130	4/26/10	MCN	6/07/11	407	3
3D9.1C2D03E72B	W	97	4/19/10	LTR	5/30/11	406	3
3D9.1C2D03EF5F	W	116	2/01/10	LTR	5/31/11	484	3
3D9.1C2CB10281	Н		4/07/10	MTR	6/28/12	813	4
3D9.1C2CFB857B	Н		4/07/10	TFH	9/07/12	884	4

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2013 for TFH.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

		Release Da	ıta	Ac	lult Return Fi	nal Detection D	ata ^a
		Length	Release				
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2D07E9D1	Н		4/07/10	MTR ^b	6/02/12	787	4
3D9.1C2D0C2DA7	Н		4/07/10	MTR	5/24/12	778	4
3D9.1C2D0C5BED	Н		4/07/10	MTR	5/19/12	773	4
3D9.1C2D0D1C3C	Н		4/07/10	UTR	5/26/12	778	4
3D9.1C2D0D4DF0	Н		4/07/10	MTR	5/22/12	776	4
3D9.1C2D10D771	Н		4/07/10	UTR	6/13/12	798	4
3D9.1C2D10D97F	Н		4/07/10	MTR^b	6/3/12	788	4
3D9.1C2D1187CD	Н		4/07/10	MTR	5/22/12	776	4
3D9.1C2D74B7DA	Н		4/07/10	LGR	5/15/12	769	4
3D9.1C2D74B82A	Н		4/07/10	UTR	5/26/12	780	4
3D9.1C2D74BF68	Н		4/07/10	UTR	5/28/12	782	4
3D9.1C2D74C77F	Н		4/07/10	MTR	5/24/12	778	4
3D9.1C2D754D26	Н		4/07/10	BON	4/24/12	748	4
3D9.1C2D759A04	Н		4/07/10	UTR	5/24/12	778	4
3D9.1C2D7A9292	Н		4/07/10	MTR	5/19/12	773	4
3D9.1C2D7A941E	Н		4/07/10	UTR^b	6/14/12	799	4
3D9.1C2D7AB4B3	Н		4/07/10	BON	5/9/12	763	4
3D9.1C2D7AB60D	Н		4/07/10	LTR	5/9/12	763	4
3D9.1C2D7ACCC9	Н		4/07/10	BON	4/22/12	746	4
3D9.1C2D7AE415	Н		4/07/10	MTR	5/20/12	774	4
3D9.1C2D7B0029	Н		4/07/10	TFH	8/29/12	875	4
3D9.1C2D7B39BD	Н		4/07/10	TFH	4/26/12	750	4
3D9.1C2D7B4B24	Н		4/07/10	BON	5/08/12	762	4
3D9.1C2D7B5A59	Н		4/07/10	BON	5/15/12	769	4
3D9.1C2D7B86D6	Н		4/07/10	MTR	5/21/12	775	4
3D9.1C2D7BB359	Н		4/07/10	AFC	7/01/12	816	4
3D9.1C2D7C0465	Н		4/07/10	LTR	5/12/12	766	4
3D9.1C2D7C4237	Н		4/07/10	MTR	6/14/12	799	4
3D9.1C2D7C4BBC	Н		4/07/10	MTR	3/31/12	724	4
3D9.1C2D80D818	Н		4/07/10	MTR	5/29/12	783	4
3D9.1C2D812B48	Н		4/07/10	UTR	5/26/12	780	4
3D9.1C2D815183	Н		4/07/10	MTR	5/21/12	775	4
3D9.1C2D8243D7	Н		4/07/10	MTR	5/19/12	773	4
3D9.1C2D825C9D	Н		4/07/10	MTR	5/26/12	780	4
3D9.1C2D826D4F	Н		4/07/10	MTR	5/19/12	773	4
3D9.1C2D826F4D	Н		4/07/10	LTR	5/21/12	775	4

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TELL.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

]	Release Da	nta	Ac	dult Return Fi	nal Detection D	ata ^a
		Length	Release				
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2D828612	Н		4/07/10	MTR	5/19/12	773	4
3D9.1C2D829474	Н		4/07/10	LTR	5/24/12	778	4
3D9.1C2D829B73	Н		4/07/10	LGR	5/23/12	777	4
3D9.1C2D0C6405	Н		4/07/10	UTR	5/12/13	1131	5
3D9.1C2CFB5F1B	W	105	5/02/10	LTR	4/07/12	706	4
3D9.1C2CFD12B3	W	120	4/29/10	MTR	5/21/12	753	4
3D9.1C2CFF248D	W	116	5/10/10	BON	5/02/12	768	4
3D9.1C2D02D770	W	119	5/06/10	MTR	6/11/12	768	4
3D9.1C2D02EB49	W	104	5/07/10	AFC	9/27/12	874	4
3D9.1C2D03599C	W	101	4/05/10	LTR	4/18/12	743	4
3D9.1C2D03A283	W	112	5/13/10	LTR	6/14/12	763	4
3D9.1C2CF44450	W	93	12/20/10	LTR	4/25/12	492	4
3D9.1C2D03EECD	W	125	3/26/10	TFH	6/17/13	1179	5
3D9.1C2D031A03	W	97	4/29/10	TFH	6/15/13	1143	5
3D9.1C2CFC3DD5	W	115	5/14/10	TDA	5/05/13	1087	5
3D9.1C2CF52775	W	83	11/15/10	UTR	5/18/13	915	5
3D9.1C2CF52CD5	W	80	12/09/10	AFC	9/20/13	915	5
3D9.1C2DC172E2	Н	164	4/16/11	LTR	4/02/12	351	3
3D9.1C2DC19AEF	Н	155	4/16/11	UTR	7/02/12	443	3
3D9.1C2DC19B8B	Н	142	4/16/11	UTR	6/02/12	413	3
3D9.1C2DC31A5A	Н	154	4/16/11	LTR	5/22/12	402	3
3D9.1C2DC3FB56	Н	124	4/16/11	MTR	6/07/12	418	3
3D9.1C2DC4C76D	Н	149	4/16/11	BON	5/08/12	388	3
3D9.1C2DCA0C73	Н	148	4/16/11	UTR^b	7/02/12	443	3
3D9.1C2D817ABD	Н	119	4/16/11	TFH	6/09/13	780	4
3D9.1C2D81924A	Н	115	4/16/11	UTR	5/29/13	765	4
3D9.1C2D8444A7	Н	105	4/16/11	TFH	6/08/13	784	4
3D9.1C2D846942	Н	108	4/16/11	BON	5/03/13	748	4
3D9.1C2D9FC789	Н	110	4/16/11	UTR	5/24/13	769	4
3D9.1C2DA03139	Н	107	4/16/11	TFH	6/07/13	773	4
3D9.1C2DA04F21	Н	117	4/16/11	UTR	5/18/13	763	4
3D9.1C2DA2F58B	Н		4/16/11	TFH	6/23/13	799	4
3D9.1C2DBF6BA9	Н	141	4/16/11	TFH	6/11/13	773	4
3D9.1C2DBF6BBC	Н	157	4/16/11	TFH	6/10/13	786	4
3D9.1C2DC00CEF	Н	169	4/16/11	TFH	6/07/13	783	4
3D9.1C2DC0450F	Н	152	4/16/11	TFH	5/30/13	775	4

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

	I	Release Da	ıta	A	dult Return Fi	nal Detection D	ata ^a
		Length	Release	_			
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2DC070AB	Н	157	4/16/11	UTR	6/21/13	771	4
3D9.1C2DC182B7	Н	176	4/16/11	TDA	4/29/13	744	4
3D9.1C2DC19B5C	Н	156	4/16/11	BON	5/05/13	750	4
3D9.1C2DC19E38	Н	170	4/16/11	TDA	5/21/13	766	4
3D9.1C2DC1A8B3	Н	148	4/16/11	TFH	5/27/13	767	4
3D9.1C2DC29D7D	Н	148	4/16/11	TFH	5/22/13	767	4
3D9.1C2DC361C7	Н	134	4/16/11	UTR^b	5/28/13	773	4
3D9.1C2DC3D35F	Н	127	4/16/11	UTR	5/22/13	767	4
3D9.1C2DC43449	Н	164	4/16/11	TFH	6/25/13	772	4
3D9.1C2DC45465	Н	130	4/16/11	TFH	7/07/13	772	4
3D9.1C2DC4673F	Н	158	4/16/11	TFH	6/30/13	806	4
3D9.1C2DC4ADF3	Н	165	4/16/11	TFH	6/04/13	780	4
3D9.1C2DC5085D	Н	142	4/16/11	MTR	5/06/13	751	4
3D9.1C2DC52B1C	Н	143	4/16/11	TFH	6/08/13	773	4
3D9.1C2DC91C7A	Н	121	4/16/11	TFH	6/30/13	806	4
3D9.1C2DC9248E	Н	131	4/16/11	UTR	5/30/13	762	4
3D9.1C2DC9A9FC	Н	150	4/16/11	TFH	6/12/13	769	4
3D9.1C2DC9B125	Н	134	4/16/11	UTR	6/04/13	761	4
3D9.1C2DC9EA81	Н	173	4/16/11	TFH	6/08/13	784	4
3D9.1C2D751A48	\mathbf{W}	114	4/05/11	BON	5/22/12	413	3
3D9.1C2D752AEA	W	86	2/02/11	LTR	4/25/12	449	3
3D9.1C2D810EC1	W	110	5/13/11	LTR	4/21/12	344	3
3D9.1C2DCA49A5	W	126	4/17/11	BON	9/26/12	528	3
3D9.1C2DCAD4E4	\mathbf{W}	104	4/24/11	LTR	4/26/12	368	3
3D9.1C2DCB037F	\mathbf{W}	106	4/15/11	UTR	6/18/12	430	3
3D9.1C2DCB9A41	\mathbf{W}	98	5/08/11	LTR	4/26/12	352	3
3D9.1C2DCC07AE	\mathbf{W}	95	4/29/11	LTR	5/03/12	370	3
3D9.1C2DCC4647	W	112	4/24/11	LTR	4/23/12	363	3
3D9.1C2D74F991	W	91	3/15/11	TFH	6/04/13	812	4
3D9.1C2DCAB790	W	110	4/17/11	TFH	6/17/13	787	4
3D9.1C2DCA9CB6	\mathbf{W}	115	4/18/11	UTR	5/10/13	753	4
3D9.1C2DCADF0D	W	107	4/21/11	TFH	6/20/13	791	4
3D9.1C2D6F5121	W	108	4/25/11	LTR	5/21/13	757	4
3D9.1C2DCAEA83	W	115	4/26/11	TFH	5/28/13	757	4
3D9.1C2DCBB53A	W	104	4/27/11	UTR ^b	6/11/13	776	4
3D9.1C2DCBEA6D	W	106	4/27/11	UTR^b	5/13/13	747	4

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2013 for TFH.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

	1	Release Da	ıta	Ad	lult Return Fi	nal Detection D	ata ^a
		Length	Release				
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2D7B5F96	W	105	5/02/11	UTR	5/20/13	749	4
3D9.1C2D7A9160	W	101	5/14/11	TFH	6/07/13	755	4
3D9.1C2DCA977B	W	85	4/17/11	UTR	5/10/14	1119	5
3D9.1C2DCBF689	W	112	4/23/11	BON	5/16/14	1119	5
3D9.1C2D6F9B00	W	105	4/26/11	UTR	6/07/14	1138	5
3D9.1C2D7B9F0A	W	106	4/30/11	TFH	7/06/14	1132	5
3D9.1C2DC809DB	Н	154	4/16/12	TFH	7/15/13	415	3
3D9.1C2DC852D4	Н	111	4/16/12	UTR	6/26/13	436	3
3D9.1C2DC853A6	Н	134	4/16/12	UTR^b	6/17/13	427	3
3D9.1C2DCB165D	Н	116	4/16/12	UTR	5/29/13	408	3
3D9.1C2DCE4C77	Н		4/16/12	UTR^b	6/15/13	425	3
3D9.1C2DCE4C9F	Н	115	4/16/12	LTR	5/17/13	396	3
3D9.1C2DCF2BC0	Н	168	4/16/12	$\mathrm{MTR}^{\mathrm{b}}$	5/31/13	410	3
3D9.1C2DCF3297	Н	129	4/16/12	$\mathrm{TFH^b}$	7/12/13	427	3
3D9.1C2DCF6319	Н	138	4/16/12	UTR^b	6/10/13	420	3
3D9.1C2DCF6E41	Н	178	4/16/12	TFH	6/07/13	417	3
3D9.1C2DCF99B4	Н	159	4/16/12	UTR	7/01/13	441	3
3D9.1C2DCFA2AE	Н	151	4/16/12	UTR	5/31/13	410	3
3D9.1C2DC87009	Н	99	4/16/12	BON	4/23/14	737	4
3D9.1C2DC860F9	Н	141	4/16/12	TDA	4/30/14	744	4
3D9.1C2DC8639B	Н	158	4/16/12	UTR	5/15/14	759	4
3D9.1C2DD3F125	Н	128	4/16/12	UTR	5/17/14	761	4
3D9.1C2DC856B2	Н	127	4/16/12	UTR	5/19/14	763	4
3D9.1C2DC83952	Н	165	4/16/12	UTR	5/20/14	764	4
3D9.1C2DCF6493	Н	148	4/16/12	UTR	5/21/14	765	4
3D9.1C2DD01532	Н	110	4/16/12	UTR	5/24/14	768	4
3D9.1C2DC838D7	Н	133	4/16/12	UTR	6/07/14	782	4
3D9.1C2DCB0989	Н	103	4/16/12	TFH	7/01/14	806	4
3D9.1C2DD00959	Н	108	4/16/12	TFH	7/03/14	808	4
3D9.1C2DC8546B	Н	172	4/16/12	TFH	6/10/14	785	4
3D9.1C2DCFB566	Н	115	4/16/12	UTR^b	5/16/15	1125	5
3D9.1C2DCE41D6	Н	118	4/16/12	TFH	6/02/15	1131	5
3D9.1C2CF46D35	W	117	5/02/12	UTR	5/20/14	748	4
3D9.1C2CF4979F	W	104	5/03/12	UTR^b	6/01/14	759	4
3D9.1C2CF51B24	W	101	4/22/12	UTR	6/18/14	787	4
3D9.1C2CF51F21	W	111	5/02/12	TFH	6/28/14	787	4

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2013 for TFH.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

		Release Da	ıta	Ad	lult Return Fi	nal Detection D	ata ^a
		Length	Release				
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2CF68759	W	111	4/22/12	AFC	7/08/14	807	4
3D9.1C2CFC73E8	W	115	4/17/12	$\mathrm{TFH^b}$	8/28/14	778	4
3D9.1C2D0007AA	W	105	4/17/12	ICH	5/13/14	756	4
3D9.1C2D02AAF1	W	110	4/20/12	TFH	8/27/14	859	4
3D9.1C2D03180C	W	101	5/09/12	WL1	7/16/14	798	4
3D9.1C2D031EBC	W	107	5/05/12	TFH^b	6/08/14	764	4
3D9.1C2D039F3E	W	124	4/19/12	UTR	6/25/14	778	4
3D9.1C2D03EA08	W	101	4/20/12	LTR	7/19/14	686	4
3D9.1C2D74C67B	W	99	3/03/12	UTR^b	5/23/14	811	4
3D9.1C2D74FEBA	W	108	3/06/12	UTR	5/27/14	812	4
3D9.1C2D780CFE	W	96	5/17/12	BON	4/25/14	708	4
3D9.1C2D813C48	W	93	5/17/12	TFH^b	6/04/14	745	4
3D9.1C2DF588B4	W	105	12/10/12	LGR	9/27/14	656	4
3D9.1C2CFD4F61	W	112	4/20/12	TFH^b	5/22/15	1127	5
3D9.1C2D05017C	W	105	4/19/12	TFH	5/10/15	1116	5
3D9.1C2CFC993C	W	100	4/20/12	$\mathrm{TFH^{b}}$	5/22/15	1127	5
3D9.1C2D8A9CB1	W	109	12/10/12	MTR	6/25/15	927	5
3D9.1C2DF58C64	W	92	12/13/12	UTR	5/21/15	889	5
3D9.1C2E02E2D8	Н	146	4/12/13	UTR^b	6/17/14	431	3
3D9.1C2E0A1490	Н	118	4/12/13	MTR	5/27/14	410	3
3DD.003B9D167B	Н	117	4/12/13	UTR^b	6/03/14	417	3
3DD.003B9D29FE	Н	113	4/12/13	UTR	5/27/14	410	3
3DD.003B9D2C34	Н	116	4/12/13	UTR^b	6/04/14	418	3
3DD.003B9D2FCD	Н	108	4/12/13	UTR	6/02/14	416	3
3DD.003B9D31F3	Н	111	4/12/13	UTR	5/27/14	410	3
3D9.1C2DE8C3E2	Н	120	4/12/13	MTR	5/10/15	758	4
3D9.1C2DE925DA	Н	125	4/12/13	UTR^b	5/12/15	760	4
3D9.1C2DE9368F	Н	110	4/12/13	TFH	5/20/15	768	4
3D9.1C2DE959B0	Н	103	4/12/13	TDA	5/29/15	777	4
3D9.1C2DE99306	Н	140	4/12/13	TFH	5/23/15	771	4
3D9.1C2DE9ABF3	Н	118	4/12/13	UTR	5/23/15	771	4
3D9.1C2DE9B0BA	Н	115	4/12/13	UTR^b	5/18/15	766	4
3D9.1C2E033E98	Н	106	4/12/13	TFH	5/29/15	777	4
3DD.003B9D1935	Н	104	4/12/13	UTR^b	5/23/15	771	4
3DD.003B9D1AC0	Н	132	4/12/13	UTR ^b	6/10/15	789	4
3DD.003B9D1B26	Н	103	4/12/13	UTR^b	5/22/15	770	4

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2013 for TFH.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

		Release Da	ıta	Ac	lult Return Fi	nal Detection D	ata ^a
		Length	Release				
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3DD.003B9D1D63	Н	107	4/12/13	UTR	5/16/15	764	4
3DD.003B9D2095	Н	124	4/12/13	BON	5/16/15	764	4
3DD.003B9D244F	Н	106	4/12/13	UTR	5/18/15	766	4
3DD.003B9D25E2	Н	155	4/12/13	UTR^b	6/01/15	780	4
3DD.003B9D2627	Н	106	4/12/13	UTR	5/11/15	759	4
3DD.003B9D2727	Н	99	4/12/13	TFH^b	5/22/15	770	4
3DD.003B9D281C	Н	110	4/12/13	UTR^b	5/27/15	775	4
3DD.003B9D2838	Н	128	4/12/13	UTR	5/27/15	775	4
3DD.003B9D29EC	Н	116	4/12/13	MTR^b	5/15/15	763	4
3DD.003B9D2AEA	Н	109	4/12/13	UTR	5/09/15	757	4
3DD.003B9D2DDC	Н	125	4/12/13	UTR^b	5/11/15	759	4
3DD.003B9D2ED0	Н	116	4/12/13	UTR	5/24/15	772	4
3DD.003B9D321E	Н	123	4/12/13	$\mathrm{TFH^b}$	5/22/15	770	4
3DD.003B9D31A8	Н	111	4/12/13	UTR^b	5/23/16	1137	5
3D9.1C2DF74B96	W	111	4/18/13	LTR	3/05/14	320	3
3D9.1C2DF60D13	W	117	4/04/13	LTR	3/04/14	334	3
3D9.1C2DF7025E	W	120	4/15/13	TDA	6/04/14	415	3
3D9.1C2DF5DE4B	W	103	4/16/13	LGR	10/02/14	534	3
3D9.1C2D8A76AF	W	98	3/05/13	TFH	5/24/15	810	4
3D9.1C2DF5F7BA	W	125	3/19/13	MCN	7/09/15	842	4
3D9.1C2DF60BD1	W	99	3/19/13	$\mathrm{TFH^b}$	5/23/15	795	4
3D9.1C2DF58C89	W	101	3/25/13	TFH	5/24/15	790	4
3D9.1C2DF5C27F	W	103	3/25/13	UTR^b	6/03/15	800	4
3D9.1C2DF5CF8F	W	122	4/02/13	BON	4/30/15	758	4
3D9.1C2DF61573	W	118	4/08/13	UTR^b	5/16/15	768	4
3D9.1C2DF72A0B	W	126	4/09/13	UTR	5/08/15	759	4
3D9.1C2DF58547	W	110	4/10/13	UTR^b	6/06/15	787	4
3D9.1C2DF5EC24	W	116	4/10/13	$\mathrm{TFH^b}$	6/05/15	786	4
3D9.1C2DF5FF40	W	116	4/11/13	TFH^b	5/23/15	772	4
3D9.1C2DF6C4D5	W	125	4/11/13	UTR^b	5/29/15	778	4
3D9.1C2DF59B0B	W	110	4/14/13	UTR^b	5/23/15	769	4
3D9.1C2DF5C991	W	119	4/16/13	TDA	5/30/15	774	4
3D9.1C2DF6D206	W	115	4/15/13	UTR^b	6/09/15	785	4
3D9.1C2DF60BC1	W	110	4/16/13	TFH	5/16/15	760	4
3D9.1C2DF75306	W	102	4/17/13	TFH^b	6/12/15	786	4
3D9.1C2DF60D90	W	106	4/17/13	TFH^b	5/22/15	765	4

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2013 for TFH.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

]	Release Da	ata	Ad	lult Return Fi	nal Detection D	ata ^a
		Length	Release				
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2DF58555	W	109	4/20/13	TFH	5/19/15	759	4
3D9.1C2DF601C4	W	124	4/23/13	TFH	5/27/15	764	4
384.3B23A32AAE	W	121	4/28/13	TFH	6/24/15	787	4
384.3B23A1F5CC	W	110	4/28/13	TFH	5/19/15	751	4
384.3B23A2D320	W	100	5/01/13	TFH	5/18/15	747	4
384.3B23A2DA29	W	117	5/03/13	TFH^b	5/23/15	750	4
384.3B23A21153	W	124	5/04/13	TFH^b	5/19/15	743	4
384.3B23A34FB8	W	120	5/04/13	UTR^b	6/02/15	759	4
384.3B23A2D2F9	W	100	5/07/13	TFH	5/29/15	752	4
384.3B23A1E082	W	115	5/11/13	TFH^b	5/23/15	742	4
3D9.1C2DF5DD43	W	111	3/21/13	LTR	5/14/16	1150	5
3D9.1C2DF5C4D0	W	127	4/07/13	UTR	5/25/16	1144	5
3D9.1C2DF61011	W	107	4/07/13	TDA	5/09/16	1128	5
3D9.1C2DF5BC0D	W	114	4/13/13	UTR	5/22/16	1135	5
384.3B23A36516	W	99	4/22/13	UTR	5/15/16	1119	5
384.3B23A31042	W	111	5/02/13	ICH	5/15/16	1109	5
384.3B23A3C231	W	104	5/08/13	UTR	5/17/16	1105	5
384.3B23A24E07	W	116	5/10/13	UTR^b	5/26/16	1112	5
384.3B23A3A635	W	113	5/10/13	BON	5/23/16	1109	5
384.3B23A48C3E	Н	140	4/17/14	TFH^b	6/15/15	424	3
384.3B23B1952B	Н	154	4/17/14	TDA	6/01/15	410	3
384.3B23B1ADEC	Н	118	4/17/14	TFH^b	6/22/15	431	3
384.3B23B1DB32	Н	140	4/17/14	TFH	6/08/15	417	3
384.3B23B1DF51	Н	123	4/17/14	MTR	6/22/15	431	3
384.3B23B23BDC	Н	107	4/17/14	TFH^b	6/24/15	433	3
384.3B23B23C7F	Н	159	4/17/14	TFH^b	5/31/15	409	3
384.3B23B24F47	Н	134	4/17/14	LGR	6/07/15	416	3
384.3B23A74AE0	Н	151	4/17/14	UTR	6/16/15	425	3
384.3B23A7EDC3	Н	163	4/17/14	TFH^b	6/14/15	423	3
384.3B23A88231	Н	166	4/17/14	UTR ^b	5/28/15	406	3
384.3B23A935F2	Н	120	4/17/14	TFH^b	5/24/15	402	3
384.3B23A94E4D	Н	114	4/17/14	MTR^b	6/13/15	422	3
384.3B23A95BAA	Н	155	4/17/14	LGR	6/03/15	412	3
384.3B23A98410	Н	115	4/17/14	TFH^b	8/02/15	439	3
384.3B23AA49B7	Н	124	4/17/14	TFH^b	6/17/15	425	3
3D9.1C2DB6EEA0	Н	140	4/17/14	UTR ^b	6/01/15	410	3

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2013 for TEH.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

		Release Da	nta	Ac	lult Return Fi	nal Detection D	ata ^a
		Length	Release				
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age
3D9.1C2DB7680C	Н	162	4/17/14	UTR ^b	6/22/15	431	3
3D9.1C2DC064C9	Н	126	4/17/14	MCN	6/06/15	415	3
3D9.1C2DCA985B	Н	127	4/17/14	UTR	6/18/15	427	3
384.3B23A48FDF	Н	114	4/17/14	UTR	5/15/16	759	4
384.3B23A49E45	Н	148	4/17/14	UTR	5/17/16	761	4
384.3B23A91470	Н	117	4/17/14	UTR	5/17/16	761	4
384.3B23A91605	Н	127	4/17/14	BON	5/17/16	761	4
384.3B23A98810	Н	116	4/17/14	BON	4/27/16	741	4
384.3B23A991EB	Н	134	4/17/14	UTR	5/29/16	773	4
384.3B23AA0FA0	Н	170	4/17/14	UTR^b	5/31/16	775	4
384.3B23B1E526	Н	147	4/17/14	MTR^b	5/20/16	764	4
384.3B23B20602	Н	95	4/17/14	UTR^b	6/09/16	784	4
384.3B23B214F5	Н	147	4/17/14	TDA	5/09/16	753	4
384.3B23B2475C	Н	139	4/17/14	TDA	5/04/16	748	4
384.3B23B2547B	Н	107	4/17/14	TDA	4/25/16	739	4
384.3B23B2571A	Н	158	4/17/14	UTR	6/07/16	782	4
384.3B23B258F8	Н	126	4/17/14	BON	4/23/16	737	4
3D9.1C2DCA9B06	Н	125	4/17/14	MTR	5/14/16	758	4
3DD.00775150D8	W	118	4/28/15	LTR	6/14/17	778	4
3DD.0077484E81	Н	133	4/06/15	UTR^b	6/04/16	425	3
3DD.0077487AD0	Н	162	4/06/15	UTR	5/30/16	420	3
3DD.007748AE73	Н	147	4/06/15	UTR	7/20/16	471	3
3DD.007749A8C2	Н	136	4/06/15	UTR	9/21/16	444	3
3DD.007749DDBD	Н	148	4/06/15	UTR^b	6/23/16	444	3
3DD.007749EDDD	Н	127	4/06/15	UTR^b	7/02/16	453	3
3DD.00774A59CE	Н	163	4/06/15	UTR	6/13/16	434	3
3DD.00774A73B1	Н	138	4/06/15	MTR	5/31/16	421	3
3DD.00774A95A2	Н	129	4/06/15	UTR^b	6/19/16	440	3
3DD.00774AC987	Н	130	4/06/15	UTR^b	6/07/16	428	3
3DD.007747D619	Н	176	4/06/15	TDA	7/19/17	835	4
3DD.007747F7ED	Н	137	4/06/15	LMO	5/29/17	784	4
3DD.00774888D6B	Н	129	4/06/15	LTR	5/27/17	782	4
3DD.0077499F22	Н	141	4/06/15	LTR	6/10/17	796	4
3DD.007749C0F4	Н		4/06/15	LMO	6/10/17	794	4
3DD.007749CEEB	Н	134	4/06/15	BON	5/07/17	762	4
3DD.007749D2D4	Н	149	4/06/15	TFH^b	5/30/17	785	4

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TELL.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

	I	Release Da	ıta	Adult Return Final Detection Data ^a					
		Length	Release						
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age		
3DD.007749E193	Н	146	4/06/15	LMO	6/18/17	804	4		
3DD.00774A053B	Н	139	4/06/15	TFH	6/26/17	790	4		
3DD.00774A2D48	Н	149	4/06/15	MTR	7/11/17	827	4		
3DD.00774A3E6D	Н	128	4/06/15	LTR	5/05/17	760	4		
3DD.00774A3F26	Н	139	4/06/15	TFH	9/06/17	807	4		
3DD.00774A5ED9	Н	158	4/06/15	BON	5/22/17	777	4		
3DD.00774A9148	Н	118	4/06/15	TDA	6/08/17	794	4		
3DD.00774A97E7	Н	139	4/06/15	LMO	6/09/17	795	4		
3DD.0077710EA3	Н	118	4/08/16	LGR	6/06/17	424	3		
3DD.007774D735	Н	133	4/08/16	LGR	7/03/17	420	3		
3DD.0077751EB0	Н	128	4/08/16	TFH^{b}	6/19/17	437	3		
3DD.0077754705	Н	124	4/08/16	MCN	5/30/17	417	3		
3DD.0077754B3C	Н	123	4/08/16	TFH^b	7/06/17	452	3		
3DD.0077757758	Н	163	4/08/16	TFH^{b}	7/05/17	445	3		
3DD.00777577C7	Н	159	4/08/16	TFH	6/24/17	435	3		
3DD.007775AC37	Н	152	4/08/16	BON	5/22/17	409	3		
3DD.007775B4A4	Н	159	4/08/16	LMO	6/07/17	425	3		
3DD.007775C8C1	Н	128	4/08/16	TFH	8/04/17	446	3		
3DD.007775D09B	Н	126	4/08/16	TFH^b	6/13/17	431	3		
3DD.00777F78DD	Н	161	4/08/16	LMO	5/31/17	418	3		
3DD.00777FBA6E	Н	154	4/08/16	LGR	6/11/17	421	3		
3DD.0077800113	Н	135	4/08/16	LGR	6/04/17	421	3		
3DD.007780EAC4	Н	135	4/08/16	LGO	6/09/17	427	3		
3DD.007780F56C	Н	150	4/08/16	TFH	6/21/17	439	3		
3DD.007781CE48	Н	140	4/08/16	TFH^b	6/07/17	420	3		
3DD.007781CF34	Н	137	4/08/16	LMO^b	6/08/17	424	3		
3DD.00778D992C	Н	118	4/08/16	TFH	6/20/17	435	3		
3DD.00776F6554	Н	120	4/08/16	TFH^b	6/08/18	791	4		
3DD.00777169D1	Н	161	4/08/16	MTR	5/26/18	778	4		
3DD.0077719998	Н	149	4/08/16	TFH	6/27/18	781	4		
3DD.007771ADFE	Н	123	4/08/16	TFH	6/19/18	799	4		
3DD.007771F0BE	Н	138	4/08/16	BON	5/24/18	776	4		
3DD.007771FE88	Н	113	4/08/16	TFH	6/20/18	794	4		
3DD.0077721C1E	Н	126	4/08/16	TFH	6/07/18	787	4		
3DD.0077722AB9	Н	161	4/08/16	BON	5/27/18	779	4		
3DD.007772D04C	Н	171	4/08/16	TFH	6/19/18	772	4		

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2013 for TFH.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix F (continued). Final PIT tag detections of returning Tucannon River spring Chinook from fish originally tagged as juveniles from the Tucannon River.

	I	Release Da	ıta	A	Adult Return Final Detection Data ^a					
		Length	Release	_						
PIT Tag ID	Origin	(mm)	Date	OBS	OBS Date	Travel Time	Est. Age			
3DD.007774B9D1	Н	165	4/08/16	TFH	6/14/18	796	4			
3DD.007774DA7E	Н	148	4/08/16	BON	5/05/18	757	4			
3DD.007774DAB6	Н	154	4/08/16	MTR	5/22/18	774	4			
3DD.007775295C	Н	138	4/08/16	TFH^b	6/15/18	798	4			
3DD.007775463E	Н	118	4/08/16	JOD	5/27/18	779	4			
3DD.0077756BB3	Н	118	4/08/16	TFH^b	6/20/18	802	4			
3DD.0077757EDF	Н	106	4/08/16	BON	4/26/18	748	4			
3DD.00777583DD	Н	128	4/08/16	TFH	6/20/18	777	4			
3DD.0077759EED	Н	137	4/08/16	TDA	5/03/18	755	4			
3DD.007775AB57	Н	166	4/08/16	TFH	6/12/18	792	4			
3DD.007775AB97	Н	102	4/08/16	TFH^b	6/13/18	791	4			
3DD.007775ABD7	Н	132	4/08/16	BON	5/19/18	771	4			
3DD.007775C5A1	Н	130	4/08/16	LGR	6/07/18	790	4			
3DD.007775C7BD	Н	142	4/08/16	JOD	5/27/18	779	4			
3DD.007775E060	Н	117	4/08/16	MTR^b	6/02/18	785	4			
3DD.007775E19A	Н	154	4/08/16	TFH	6/16/18	791	4			
3DD.007775F701	Н	134	4/08/16	TFH^b	6/03/18	780	4			
3DD.007780CF9E	Н	118	4/08/16	BON	4/30/18	752	4			
3DD.007780FEA9	Н	129	4/08/16	MTR^b	6/03/18	786	4			
3DD.0077813299	Н	126	4/08/16	TFH	6/07/18	789	4			
3DD.00778C2417	Н	158	4/08/16	TFH^b	6/18/18	797	4			
3DD.0077510CED	W	103	4/23/16	TFH^b	6/16/18	784	4			
3DD.0077512587	W	100	4/25/16	BON	5/16/18	751	4			
3DD.00775159BE	W	104	3/31/16	BON	5/10/18	770	4			
3DD.007751E527	W	115	4/29/16	TFH	6/15/18	777	4			
3DD.0077B5E4B2	Н	178	4/12/17	TFH^b	6/12/18	426	3			
3DD.0077B6E3B1	Н	150	4/12/17	UTR	6/01/18	415	3			
3DD.0077B90D27	Н	154	4/12/17	LMO	5/30/18	413	3			

^a PIT tag adult detection systems were in operation beginning in 1988 for LGR, 1998 for BON, 2002 for MCN, 2005 for both ICH and LTR, 2011 for MTR and UTR, and 2012 for TFH.

^b This fish was detected bypassing the Tucannon River (LGO or LGR detection) before heading back downstream.

Appendix G: Historical Hatchery Releases (1987-2019 Release Years)

Appendix G. Historical hatchery spring Chinook releases from the Tucannon River, 1987-2019 release years. (Totals are summation by brood year and release year.)

Release		R	elease	CWT	Number	Ad-only	Additional		Mean
Year	Brood	Type ^a	Date	Codeb	CWT	marked	Tag/location/cross ^c	Kg	Wt. (g)
1987	1985	H-Acc	4/6-10	34/42	12,922			986	76
<u>Total</u>					12,922				
1988	1986	H-Acc	3/7	33/25	12,328	512		628	45
		66	"	41/46	12,095	465		570	45
		66	"	41/48	13,097	503		617	45
		"	4/13	33/25	37,893	1,456		1,696	45
		"	"	41/46	34,389	1,321		1,621	45
		"	44	41/48	37,235	1,431		1,756	45
<u>Total</u>					<u>147,037</u>	<u>5,688</u>			
1989	1987	H-Acc	4/11-13	49/50	151,100	1,065		7,676	50
<u>Total</u>					<u>151,100</u>	<u>1,065</u>			
1990	1988	H-Acc	3/30-4/10	55/01	68,591	3,007		2,955	41
		"	"	01/42	70,459	3,089		3,035	41
<u>Total</u>					<u>139,050</u>	<u>6,096</u>			
1991	1989	H-Acc	4/1-12	14/61	75,661	989		3,867	50
		66	"	01/31	22,118	289		1,130	50
<u>Total</u>					<u>97,779</u>	<u>1,278</u>			
1992	1990	H-Acc	3/30-4/10	40/21	51,149		BWT, RC, WxW	2,111	41
		"	"	43/11	21,108		BWT, LC, HxH	873	41
		"	"	37/25	13,480		Mixed	556	41
<u>Total</u>					<u>85,737</u>				
1993	1991	H-Acc	4/6-12	46/25	55,716	796	VI, LR, WxW	1,686	30
		"	"	46/47	16,745	807	VI, RR, HxH	507	30
<u>Total</u>					<u>72,461</u>	<u>1,603</u>			
1993	1992	Direct	10/22-25	48/23	24,883	251	VI, LR, WxW	317	13
		"	"	48/24	24,685	300	VI, RR, HxH	315	13
		66	"	48/56	7,111	86	Mixed	91	13
<u>Total</u>					<u>56,679</u>	<u>637</u>			
1994	1992	H-Acc	4/11-18	48/10	35,405	871	VI, LY, WxW	1,176	32
		"	"	49/05	35,469	2,588	VI, RY, HxH	1,234	32
		66	"	48/55	8,277	799	Mixed	294	32
<u>Total</u>					<u>79,151</u>	<u>4,258</u>			
1995	1993	H-Acc	3/15-4/15	53/43	45,007	140	VI, RG, HxH	1,437	32
		"	"	53/44	42,936	2,212	VI, LG, WxW	1,437	32
		P-Acc	3/20-4/3	56/15	11,661	72	VI, RR, HxH	355	30
		"	"	56/17	10,704	290	VI, LR, WxW	333	30
		"	44	56/18	13,705	47	Mixed	416	30
		Direct	3/20-4/3	56/15	3,860	24	VI, RR, HxH	118	30
		"	"	56/17	3,542	96	VI, LR, WxW	110	30
		"	"	56/18	4,537	15	Mixed	138	30
<u>Total</u>					<u>135,952</u>	<u>2,896</u>			
1996	1994	H-Acc	3/16-4/22	56/29	89,437		VI, RR, Mixed	2,326	26
		P-Acc	3/27-4/19	57/29	35,334	35	VI, RG, Mixed	1,193	30
		Direct	3/27	43/23	5,263		VI, LG, Mixed	168	34
<u>Total</u>					130,034	<u>35</u>			

Appendix G (continued). Historical hatchery spring Chinook releases from the Tucannon River, 1987-2019 release years. (Totals are summation by brood year and release year.)

Release		Re	elease	CWT	Number	Ad-only	Additional		Mean
Year	Brood	Typea	Date	Codeb	CWT	marked	Tag/location/cross ^c	Kg	Wt. (g)
1997	1995	H-Acc	3/07-4/18	59/36	42,160	40	VI, RR, Mixed	1,095	26
		P-Acc	3/24-3/25	61/41	10,045	50	VI, RB, Mixed	244	24
		Direct	3/24	61/40	9,811	38	VI, LB, Mixed	269	27
Total					62,016	<u>128</u>	, ,		
1998	1996	H-Acc	3/11-4/17	03/60	14,308	27	Mixed	410	29
		C-Acc	3/11-4/18	61/25	23,065	62	"	680	29
		66	"	61/24	24,554	50	"	707	29
		Direct	4/03	03/59	14,101	52	"	392	28
Total					<u>76,028</u>	<u>191</u>			
1999	1997	C-Acc	3/11-4/20	61/32	23,664	522	Mixed	704	29
Total					23,664	<u>522</u>			
2000	1998	C-Acc	3/20-4/26	12/11	125,192	2,747	Mixed	4,647	36
Tot al					125,192	2,747			
2001	1999	C-Acc	3/19-4/25	02/75	96,736	864	Mixed	4,180	43
Total					96,736	864		,	
2002	2000	C-Acc	3/15-4/23	08/87	99,566	2,533e	VI, RR, Mixed	2,990	29
Total					99,566	2,533e	, ,	,	
2002	2000CB	C-Acc	3/15/4/23	63	3,031	24 ^f	CB, Mixed	156	51
Total					3,031	<u>24^f</u>			
2002	2001	Direct	5/06	14/29	19,948	1,095	Mixed	77	4
Total					19,948	1,095			
2002	2001CB	Direct	5/06	14/30	20,435	157	CB, Mixed	57	3
Total					20,435	<u>157</u>			
2003	2001	C-Acc	4/01-4/21	06/81	144,013	2,909e	VI, RR, Mixed	5,171	35
Total					144,013	2,909e			
2003	2001CB	C-Acc	4/01-4/21	63	134,401	5,995 ^f	CB, Mixed	4,585	33
<u>Total</u>					<u>134,401</u>	<u>5,995^f</u>			
2004	2002	C-Acc	4/01-4/20	17/91	121,774	1,812e	VI, RR, Mixed	4,796	39
Total					<u>121,774</u>	1,812e			
2004	2002CB	C-Acc	4/01-4/20	63	42,875	1,909 ^f	CB, Mixed	1,540	34
<u>Total</u>					<u>42,875</u>	1,909 ^f			
2005	2003	C-Acc	3/28-4/15	24/82	69,831	1,323e	VI, RR, Mixed	2,544	36
Total					<u>69,831</u>	1,323e			
2005	2003CB	C-Acc	3/28-4/15	27/78	125,304	$4,760^{\rm f}$	CB, Mixed	4,407	34
<u>Total</u>					<u>125,304</u>	4,760 ^f			
2006	2004	C-Acc	4/03-4/26	28/87	67,272	$270^{\rm e}$	VI, RR, Mixed	2,288	34
Total					<u>67,272</u>	270e			
2006	2004CB	C-Acc	4/03-4/26	28/65	127,162	5,150 ^f	CB, Mixed	3,926	30
<u>Total</u>					<u>127,162</u>	<u>5,150^f</u>			
2007	2005	C-Acc	4/02-4/23	35/99	144,833	4,633 e	VI, RR, Mixed	8,482	57
Total					<u>144,833</u>	4,633e			
2007	2005CB	C-Acc	4/02-4/23	34/77	88,885	1,171 ^f	CB, Mixed	5,525	61
<u>Total</u>					<u>88,885</u>	1,171 ^f			

Appendix G (continued). Historical hatchery spring Chinook releases from the Tucannon River, 1987-2019 release years. (Totals are summation by brood year and release year.)

Release		Release		CWT	Number	Ad-only	Additional		Mean
Year	Brood	Typea	Date	Codeb	CWT	marked	Tag/location/cross ^c	Kg	Wt. (g)
2008	2006	C-Acc	4/08-4/22	40/93	50,309	$2,426^{e}$	VI, LB, Mixed	2,850	54
2008	2006	C-Acc	4/08-4/22	40/94	51,858	1,937e	VI, LP, Mixed	2,106	39
Total					<u>102,167</u>	4,363e			
2008	2006CB	C-Acc	4/08-4/22	41/94	75,283	$2,893^{f}$	CB, Mixed	4,493	57
<u>Total</u>					<u>75,283</u>	2,893 ^f			
2009	2007	C-Acc	4/13-4/22	46/88	55,266	214e	VI, LB, Mixed	3,188	57
2009	2007	C-Acc	4/13-4/22	46/87	58,044	1,157e	VI, LP, Mixed	2,203	37
<u>Total</u>					<u>113,310</u>	1,371 ^e			
2010	2008	C-Acc	4/2-4/12	51/75	84,738	1,465 ^e	VI, LB, Mixed	5,672	66
2010	2008	C-Acc	4/2-4/12	51/74	84,613	2,081e	VI, LP, Mixed	3,423	40
Total					<u>169,351</u>	3,546 ^e			
2010	2009	Direct	4/22-4/23	None	0	52,253 ^f	Oxytet., Mixed	342	7
<u>Total</u>					<u>0</u>	<u>52,253</u> f			
2011	2009	C-Acc	4/7-4/25	55/66	113,049	O ^e	VI, LB, Mixed	5,767	51
2011	2009	C-Acc	4/7-4/25	55/65	117,824	564e	VI, LP, Mixed	4,135	35
Total					230,873	<u>564</u> e			
2012	2010	C-Acc	4/11-4/23	60/76	96,984	275e	VI, LB, Mixed	6,400	66
2012	2010	C-Acc	4/11-4/23	60/75	102,169	$2,157^{e}$	VI, LP, Mixed	3,312	32
Total					<u>199,153</u>	2,432e			
2012	2011	Direct	5/01	None	0	39,460 ^f	Oxytet., Mixed	285	7
Total					<u>0</u>	39,460 ^f			
2013	2011	C-Acc	4/3-4/22	64/42	27,748	1,825 ^f	TFH reared, Mixed	987	33
2013	2011	C-Acc	4/3-4/22	64/41	227,703	$2,688^{f}$	LFH reared, Mixed	7,691	33
Total					<u>255,451</u>	4,513 ^f			
2014	2012	C-Acc	4/11-4/23	65/86	21,101	1,916 ^f	TFH reared, Mixed	746	32
2014	2012	C-Acc	4/11-4/23	65/85	179,400	1,093 ^f	LFH reared, Mixed	5,853	32
Total					200,501	3,009 ^f			
2015	2013	C-Acc	3/27-4/16	67/43	20,373	3,061 ^f	TFH reared, Mixed	872	37
2015	2013	C-Acc	3/27-4/16	67/42	179,494	4,931 ^f	LFH reared, Mixed	6,863	37
Total					199,867	$7,992^{f}$,	,	
2016	2014	C-Acc	4/01-4/15	68/84	216,295	4,804 ^f	Mixed	8,883	40
Total					216,295	4,804 ^f		,	
2017	2015	C-Acc	4/04-4/21	70/39	187,601	12,085	Mixed	7,883	40
Total					187,601	12,085 ^f			-
2018	2016	C-Acc	4/09-4/27	72/01	202,952	6,079	Mixed	11,434	55
<u>Total</u>		C 1.00	02 21	, _, 0 1	202,952 202,952	6,079 ^f	1111100	-1,.01	
2019	2017	C-Acc	4/04-5/03	73/96	140,262	3.957	Mixed	4,308	30
Total	_01/	C . 100	., 0 . 5, 05	. 5,70	140,262	3,957 ^f		.,200	50

^a Release types are: Tucannon Hatchery Acclimation Pond (H-Acc); Portable Acclimation Pond (P-Acc); Curl Lake Acclimation Pond (C-Acc); and Direct Stream Release (Direct).

^b All tag codes start with agency code 63.

^c Codes listed in column are as follows: BWT - Blank Wire Tag; CB - Captive Brood; VI-Visual Implant (elastomer); LR - Left Red, RR - Right Red, LG-Left Green, RG - Right Green, LY - Left Yellow, RY - Right Yellow, LB - Left Blue, RB - Right Blue, LP - Left Purple; Oxytet. – Oxytetracycline Mark; Crosses: WxW - wild x wild progeny, HxH - hatchery x hatchery progeny, Mixed – wild x hatchery progeny.

^d No tag loss data due to presence of both CWT and BWT in fish.

e VI tag only.

f No wire.

Appendix H: Numbers of Fish Species Captured by Month in the Tucannon River Smolt Trap during the 2018 Outmigration

Appendix H. Numbers of fish species captured by month in the Tucannon River smolt trap during the 2018 outmigration sampling period (16 October 2017 - 6 July 2018).

Species	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Total
Nat. spring Chinook	2	16	7	8	8	22	101	209	10		383
Hatch. spring Chinook							210	4,674	60		4,944
Fall Chinook					15	105	146	183	402	6	857
Coho salmon						2	1	13	5		21
Bull trout			1								1
Steelhead < 80 mm		1				2	3	12	5	5	28
Steelhead 80-124 mm	1	7	3	3	2						16
Steelhead ≥ 125 mm	1	56	23	11	11	6	300	1,118	7		1,533
Hat. endemic steelhead							279	727	12		1,018
Pacific lamprey -											
Ammocoetes	1	3			14	15	39		2		74
Pacific lamprey -											
Macropthalmia		10	5		1						16
Pacific lamprey -											
Adults								4			4
Smallmouth bass	17	4	1	1	1	1	11	13	2		51
Pumpkinseed sunfish								1			1
Chiselmouth	1	1	2				2	90	51	1	148
Longnose dace		6				5	5	5	1		22
Speckled dace	1										1
Redside shiner	27	2				2	6	77	58	3	175
Bridgelip sucker	6	15	3	4	1	3	11	11	4	1	59
Northern pikeminnow	2	5	1			1	8	34	4		55
Brown bullhead								2			2
Sculpin sp.									1		1

Appendix I: Proportionate Natural Influence (PNI) for the Tucannon Spring Chinook Population (1985-2018)	_

Appendix I. Proportionate Natural Influence $(PNI)^a$ for the Tucannon River spring Chinook population (1985-2018). Note: Pre-spawn and trap mortalities are excluded from the analysis.

	Spawned	Hatchery	River	Spawning Fish		
	Brood	lstock		•		
		% Natural		% Hatchery		PNI
Year	Total	(PNOB)	Total	(PHOS)	PNI	< 0.50
1985	8	100.00	695	0.00	1.00	
1986	91	100.00	440	0.00	1.00	
1987	83	100.00	407	0.00	1.00	
1988	90	100.00	257	0.00	1.00	
1989	122	45.08	276	1.09	0.98	
1990	62	48.39	572	21.50	0.69	
1991	71	56.34	291	32.30	0.64	
1992	82	45.12	476	35.92	0.56	
1993	87	51.72	397	38.29	0.57	
1994	69	50.72	97	0.00	1.00	
1995	39	23.08	27	0.00	1.00	
1996	75	44.00	152	23.03	0.66	
1997	89	42.70	105	35.24	0.55	
1998	86	52.33	60	26.67	0.66	
1999	122	0.82	160	97.50	0.01	*
2000	73	10.96	201	69.15	0.14	*
2001	104	50.00	766	19.84	0.72	
2002	93	45.16	568	60.56	0.43	*
2003	75	54.67	329	25.84	0.68	
2004	88	54.55	346	17.34	0.76	
2005	95	49.47	264	19.70	0.72	
2006	88	40.91	202	24.26	0.63	
2007	82	62.20	211	22.27	0.74	
2008	114	35.09	796	38.94	0.47	*
2009	173	50.87	1,191	49.29	0.51	
2010	161	50.31	938	42.22	0.54	
2011	166	53.61	849	29.68	0.64	
2012	164	56.10	335	30.15	0.65	
2013	149	62.42	170	30.59	0.67	
2014	126	67.46	294	27.55	0.71	
2015	126	79.37	523	66.92	0.54	
2016	118	44.92	340	66.47	0.40	*
2017	99	19.19	249	80.32	0.19	*
2018	138	23.91	220	86.82	0.22	*

^a $\overline{PNI = PNOB/(PNOB + PHOS)}$.

PNOB = Percent natural origin fish in the hatchery broodstock.

PHOS = Percent hatchery origin fish among naturally spawning fish.

Appendix J: Recoveries of Coded-Wire Tagged
Salmon Released into the Tucannon River for the
1985-2015 Brood Years

Appendix J. Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year		985		86	19	
Smolts Released	12,922		147,037		151,	
Fish Size (g)	76		45		5	
CWT Codes ^a		/42		/46, 41/48	49/50	
Release Year		987	19	88	1989	
Agency	Observed	Estimated	Observed	Estimated	Observed	Estimated
(fishery/location)	Number	Number	Number	Number	Number	Number
WDFW						
Tucannon River			30	84	28	130
Kalama R., Wind R.						
Fish Trap - F.W.			_	_		
Treaty Troll		• •	1	2		
Lyons Ferry Hatch.b	32	38	136	280	53	71
F.W. Sport			1	4		
ODFW						
Test Net, Zone 4	1	1	1	1		
Treaty Ceremonial	1	•	2	4	1	2
Three Mile, Umatilla R.			_	•		_
Spawning Ground						
Fish Trap - F.W.						
F.W. Sport						
Hatchery						
CDFO			_			
Non-treaty Ocean Troll			1	4		
Mixed Net & Seine						
Ocean Sport						
USFWS						
Warm Springs Hatchery						
Dworshak NFH						
IDEC						
IDFG						
Hatchery Total Returns	33	39	172	379	82	203
Tucannon (%)		39 7.4			99	
Out-of-Basin (%)		0.0	96.0		0.	
Commercial Harvest (%)		6	0.0 1.8		0.	
Sport Harvest (%)		0.0		.1	0.	
Treaty Ceremonial (%)		0.0		.1		.0
Other (%)		0.0		.0	0.	
Survival		30				
Dui 11141	U.	.50	0.26		0.13	

WDFW agency code prefix is 63.
 Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year		88		089	199		
Smolts Released	139,050			779	85,737 41		
Fish Size (g)	41 01/42, 55/01			50			
CWT Codes ^a Release Year		, 55/01 190		, 14/61 991	37/25, 40/21, 43/11 1992		
	Observed	Estimated	Observed	Estimated	Observed Estimated		
Agency (fishery/location)	Number	Number	Number	Number	Number	Number	
WDFW	rumber	rumber	rumoer	Tullioci	rvamoer	rumber	
Tucannon River	108	371	61	191	2	6	
Kalama R., Wind R.	100	371	01	171	_	Ü	
Fish Trap - F.W.							
Treaty Troll			2	2			
Lyons Ferry Hatch.b	83	86	55	55	19	19	
F.W. Sport	1	4			-		
•							
ODFW							
Test Net, Zone 4	3	3	2	2			
Treaty Ceremonial	8	17	4	8			
Three Mile, Umatilla R.							
Spawning Ground							
Fish Trap - F.W.							
F.W. Sport							
Hatchery							
CDFO							
Non-treaty Ocean Troll							
Mixed Net & Seine							
Ocean Sport							
USFWS							
Warm Springs Hatchery	1	1					
Dworshak NFH	1	1					
IDFG							
Hatchery							
Total Returns	204	482	124	258	21	25	
Tucannon (%)		1.8		5.3	100		
Out-of-Basin (%)		.2		.0	0.		
Commercial Harvest (%)		.6		.6	0.		
Sport Harvest (%)		.8		0.0	0.		
Treaty Ceremonial (%)		.5		.1	0.		
Other (%)		.0 35		0.0	0.0		
Survival a WDEW agency code prefix is 63	0.	<i>აა</i>	0.26		0.03		

^a WDFW agency code prefix is 63. ^b Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year		91		92	1992		
Smolts Released		461		679	79,		
Fish Size (g)	30			3		2	
CWT Codes ^a		46/47		/24, 48/56	48/10, 48/55, 49/05		
Release Year		93	1993		1994		
Agency	Observed	Estimated	Observed	Estimated	Observed	Estimated	
(fishery/location)	Number	Number	Number	Number	Number	Number	
WDFW							
Tucannon River					11	34	
Kalama R., Wind R.							
Fish Trap - F.W.							
Treaty Troll	2.4	2.4	2	2	4.5	47	
Lyons Ferry Hatch.b	24	24	2	2	45	47	
F.W. Sport							
ODFW							
Test Net, Zone 4							
Treaty Ceremonial	1	3			1	1	
Three Mile, Umatilla R.	1	3			1	1	
Spawning Ground	1	1			2	2	
Fish Trap - F.W.	•	1	1	1	5	9	
F.W. Sport			•	1	2	2	
Hatchery					_	-	
CDFO							
Non-treaty Ocean Troll							
Mixed Net & Seine			1	2			
Ocean Sport							
USFWS							
Warm Springs Hatchery					3	3	
Dworshak NFH							
TDEG							
IDFG							
Hatchery	2.5	20				00	
Total Returns	26	28	4	5	69	98	
Tucannon (%)		5.7		0.0		2.7	
Out-of-Basin (%) Commercial Harvest (%)		.6		0.0		1.3	
Sport Harvest (%)		.0 .0		0.0 .0		.0 .0	
Treaty Ceremonial (%)		.0).7		.0			
Other (%)		.0		.0	1.0 0.0		
Survival		.0 04		.0 01			
a WDFW agency code prefix is 63		U-T	0.	01	0.	0.12	

WDFW agency code prefix is 63.
 Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year Smolts Released Fish Size (g) CWT Codes ^a Release Year	135 30 56/15, 56/17	1993 135,952 30-32 56/15, 56/17-18, 53/43-44 1995		135,952 30-32 130,034 25-35 (15, 56/17-18, 53/43-44 43/23, 56/29, 57/29		130,034 25-35 43/23, 56/29, 57/29		1995 62,016 24-27 59/36, 61/40, 61/41 1997	
Agency (fishery/location)	Observed Number	Estimated Number	Observed Number	Estimated Number	Observed Number	Estimated Number			
WDFW Tucannon River Kalama R., Wind R. Fish Trap - F.W.	42	138	3	8	36	92			
Treaty Troll Lyons Ferry Hatch. ^b F.W. Sport	66	66	21	21	94	94			
ODFW									
Test Net, Zone 4 Treaty Ceremonial Three Mile, Umatilla R.	3	3							
Spawning Ground	3	3			1	1			
Fish Trap - F.W. F.W. Sport	1	1							
Hatchery	1	1			1	1			
CDFO Non-treaty Ocean Troll Mixed Net & Seine Ocean Sport	1	3							
USFWS Warm Springs Hatchery Dworshak NFH									
IDFG Hatchery									
Total Returns	117	215	24	29	132	188			
Tucannon (%) Out-of-Basin (%)		1.9 .3		0.0	98	3.9			
Commercial Harvest (%)		.3 .0		.0	0				
Sport Harvest (%)		.4	0.0		0				
Treaty Ceremonial (%)		.4		.0	0				
Other (%)		.0		.0	0.0				
Survival		16	0.	02	0.30				

WDFW agency code prefix is 63.
 Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year	19	96	19	197	19	98
Smolts Released	76,	028	23,	509	124	
Fish Size (g)		8	2	8	35	
CWT Codes ^a	03/59-60, 61/24-25		61.	/32	12/11	
Release Year	19	98	1999		2000	
Agency	Observed	Estimated	Observed	Estimated	Observed	Estimated
(fishery/location)	Number	Number	Number	Number	Number	Number
WDFW	4.4	1.40	1.7	0.5	1.47	600
Tucannon River	44	140	17	85	147	680
Kalama R., Wind R.						
Fish Trap - F.W.						
Treaty Troll	06	99	44	16	02	02
Lyons Ferry Hatch. ^b F.W. Sport	96	99	44	46	83 3	83 14
Non-treaty Ocean Troll					1	2
Non-treaty Ocean Tron					1	2
ODFW						
Test Net, Zone 4					1	1
Treaty Ceremonial					5	5
Three Mile, Umatilla R.						
Spawning Ground					1	1
Fish Trap - F.W.	1	1	2	2	8	10
F.W. Sport					2	4
Hatchery	2	2	1	1		
Columbia R. Gillnet			7	22	32	85
Columbia R. Sport			2	15	17	94
CDFO						
Non-treaty Ocean Troll						
Mixed Net & Seine						
Ocean Sport						
Geean Sport						
USFWS						
Warm Springs Hatchery						
Dworshak NFH						
IDFG						
Hatchery	1	1	1	1		
Total Returns	144	243	74	172	300	979
Tucannon (%)		3.4		5.2	77	
Out-of-Basin (%)		.6		.3	1.	
Commercial Harvest (%)		.0		2.8	9	
Sport Harvest (%)		.0		.7		.4
Treaty Ceremonial (%)		.0		.0	0.	
Other (%)		.0		.0	0.	.0
Survival		32		73	0.	79
1 UDEW 1 C : (2						

WDFW agency code prefix is 63.
 Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year Smolts Released		99 736	99,)00 ,566	2001 144,013			
Fish Size (g) CWT Codes ^a		3 /75		29 /87		35 06/81		
Release Year	20			002	2003			
Agency	Observed	Estimated	Observed	Estimated	Observed	Estimated		
(fishery/location) WDFW	Number	Number	Number	Number	Number	Number		
Tucannon River	2	12	13	37	6	26		
Kalama R., Wind R.	_		10	٥,		-0		
Fish Trap - F.W.								
Treaty Troll								
Lyons Ferry Hatch.b	6	6	39	39	51	51		
F.W. Sport								
Non-treaty Ocean Troll								
ODFW								
Test Net, Zone 4								
Treaty Ceremonial								
Three Mile, Umatilla R.								
Spawning Ground								
Fish Trap - F.W.								
F.W. Sport								
Hatchery		2						
Columbia R. Gillnet	1	3	1	1				
Columbia R. Sport								
CDFO								
Non-treaty Ocean Troll					1	5		
Mixed Net & Seine								
Ocean Sport								
USFWS								
Warm Springs Hatchery								
Dworshak NFH								
IDFG								
Hatchery								
Total Returns	9	21	53	77	58	82		
Tucannon (%)		5.0		3.7		3.9		
Out-of-Basin (%)		.0		0.0		0.0		
Commercial Harvest (%)		1.0		.3		5.1		
Sport Harvest (%)	_	.0		0.0		0.0		
Treaty Ceremonial (%) Other (%)		.0 .0		0.0 0.0).0).0		
Otner (%) Survival		.0 02		.0 .08		.06		
a WDFW agency code prefix is 63		02	0.	.00	1 0	.00		

WDFW agency code prefix is 63.
 Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year Smolts Released Fish Size (g) CWT Codes ^a	14	948 1 /29	121 3 17	002 ,774 9	2003 69,831 36 24/82		
Release Year Agency	Observed	02 Estimated	Observed	Estimated	2005 Observed Estimated		
(fishery/location)	Number	Number	Number	Number	Number	Number	
WDFW Tucannon River Kalama R., Wind R. Fish Trap - F.W. Treaty Troll Lyons Ferry Hatch. ^b F.W. Sport			11 58	47 58	5 21	21	
Non-treaty Ocean Troll ODFW Test Net, Zone 4 Treaty Ceremonial Three Mile, Umatilla R. Spawning Ground Fish Trap - F.W. F.W. Sport Hatchery Columbia R. Gillnet Columbia R. Sport CDFO Non-treaty Ocean Troll Mixed Net & Seine Ocean Sport USFWS Warm Springs Hatchery Dworshak NFH IDFG Hatchery	1	1					
Total Returns	1	1	69	105	26	42	
Tucannon (%) Out-of-Basin (%) Commercial Harvest (%) Sport Harvest (%) Treaty Ceremonial (%) Other (%) Survival	0 10 0 0	.0 .0 0.0 0 0	0 0 0 0	0.0 .0 .0 .0 .0 .0	(00.0 0.0 0.0 0.0 0.0 0.0 0.0	
a WDFW agency code prefix is 63		01	0.	U2	U	.00	

WDFW agency code prefix is 63.
 Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year Smolts Released		003 ,304		004 ,272	2004 127,162		
Fish Size (g)	34		3	34	30		
CWT Codes ^a		27/78 CB 2005		/87	28/65 CB		
Release Year Agency	Observed	Estimated	Observed	006 Estimated	2006 Observed Estimated		
(fishery/location)	Number	Number	Number	Number	Number	Number	
WDFW					- 10	3 (0.000 0.000	
Tucannon River	5	21	24	102	17	73	
Kalama R., Wind R.							
Fish Trap - F.W.							
Treaty Troll Lyons Ferry Hatch. ^b	2	2	44	44	36	36	
F.W. Sport	3	3	44	44	30	30	
Non-treaty Ocean Troll							
1.011 1.011							
ODFW							
Test Net, Zone 4							
Treaty Ceremonial							
Three Mile, Umatilla R. Spawning Ground							
Fish Trap - F.W.							
F.W. Sport							
Hatchery							
Columbia R. Gillnet					3	14	
Columbia R. Sport					1	4	
CDFO							
Non-treaty Ocean Troll			1	1			
Mixed Net & Seine			1	•			
Ocean Sport							
USFWS							
Warm Springs Hatchery Dworshak NFH							
DWOISHAK INFTI							
IDFG							
Hatchery							
Total Returns	8	24	69	147	57	127	
Tucannon (%)		0.0		9.3		5.8	
Out-of-Basin (%)		.0		0.0		0.0	
Commercial Harvest (%) Sport Harvest (%)		.0 .0).7).0		1.0 3.2	
Treaty Ceremonial (%)		.0		0.0).0	
Other (%)		.0		0.0		0.0	
Survival		02		22		.10	
a WDFW agency code prefix is 63							

WDFW agency code prefix is 63.
 Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year Smolts Released Fish Size (g) CWT Codes ^a Release Year	88, 6 34/7	05 885 1 7 CB 07	2005 144,833 57 35/99 2007		2006 75,283 57 41/94 CB 2008	
Agency (fishery/location)	Observed Number	Estimated Number	Observed Number	Estimated Number	Observed Number	Estimated Number
WDFW	Number	Number	Number	Number	Number	Number
Tucannon River Kalama R., Wind R. Fish Trap - F.W. Treaty Troll	78	298	130	494	68	384
Lyons Ferry Hatch. ^b F.W. Sport Non-treaty Ocean Troll	3	3	96	97	4	5
ODFW Test Net, Zone 4 Treaty Ceremonial Three Mile, Umatilla R. Spawning Ground Fish Trap - F.W. F.W. Sport Hatchery			2	2		
Columbia R. Gillnet					8	26
Columbia R. Sport Juv. Marine Seine	1	1			3	3
CDFO Non-treaty Ocean Troll Mixed Net & Seine Ocean Sport						
USFWS Warm Springs Hatchery Dworshak NFH						
IDFG						
Hatchery	62	202	220	502	02	410
Total Returns Tucannon (%)	82	302	228	593 9.7	83	418 3.1
Out-of-Basin (%)		0.7 .0		9. / 1.0		3.1).0
Commercial Harvest (%)		.0		0.3		5.2
Sport Harvest (%)		.0		0.0 0.0		0.0
Treaty Ceremonial (%)	-	.0	-	0.0		0.0
Other (%)		.3		0.0).7
Survival		34		41		.56
a WDFW agency code prefix is 63		JT	0.	71		.50

^a WDFW agency code prefix is 63.

^b Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year Smolts Released Fish Size (g) CWT Codes ^a Release Year	50,309 54 40/93 51		51, 3 40	006 858 89 /94 008	2007 58,044 37 46/87 2009	
Agency (fishery/location)	Observed Number	Estimated Number	Observed Number	Estimated Number	Observed Number	Estimated Number
WDFW	Number	Number	Number	Number	Number	Number
Tucannon River Kalama R., Wind R. Fish Trap - F.W. Treaty Troll	75	385	85	457	7	42
Lyons Ferry Hatch. ^b F.W. Sport Non-treaty Ocean Troll	42	75	48	87	31	31
ODFW Test Net, Zone 4 Treaty Ceremonial Three Mile, Umatilla R. Spawning Ground Fish Trap - F.W. F.W. Sport Hatchery Columbia R. Gillnet Columbia R. Sport	5	21	2	9	1	5
Juv. Marine Seine	3	3	2	2		
CDFO Non-treaty Ocean Troll Mixed Net & Seine Ocean Sport						
USFWS Warm Springs Hatchery Dworshak NFH						
IDFG						
Hatchery	105	40.4	1	1	20	70
Total Returns Tucannon (%)	125	484 5.1	138	556 7.8	39	78 3.6
Out-of-Basin (%)		.0		7.8).2		3.6).0
Commercial Harvest (%)		.3		.6		5.4
Sport Harvest (%)		.0		.0		0.0
Treaty Ceremonial (%)	-	.0	-	.0		0.0
Other (%)		.6		0.4		0.0
Survival		96	1.	07		.13

^a WDFW agency code prefix is 63.

^b Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year Smolts Released Fish Size (g) CWT Codes ^a Release Year	55, 5 46	007 266 7 /88 009	2008 84,613 40 51/74 2010		84,613 40 84,738 66	
Agency (fishery/location)	Observed Number	Estimated Number	Observed Number	Estimated Number	Observed Number	Estimated Number
WDFW	Number	Number	Number	Number	Number	Number
Tucannon River Kalama R., Wind R. Fish Trap - F.W. Treaty Troll	18	113	22	179	35	270
Lyons Ferry Hatch. ^b F.W. Sport Non-treaty Ocean Troll	32	32	28	28	49	49
Test Net, Zone 4 Treaty Ceremonial Three Mile, Umatilla R. Spawning Ground Fish Trap - F.W. F.W. Sport Hatchery Columbia R. Gillnet Columbia R. Sport Juv. Marine Seine CDFO Non-treaty Ocean Troll Mixed Net & Seine Ocean Sport USFWS Warm Springs Hatchery Dworshak NFH			1	4		
IDFG Hatchery						
Total Returns	50	145	51	211	84	319
Tucannon (%) Out-of-Basin (%) Commercial Harvest (%) Sport Harvest (%)	0 0 0	0.0 .0 .0 .0	0 1 0	3.1 .0 .9	0	00.0 0.0 0.0 0.0
Treaty Ceremonial (%)		.0		.0).0).0
Other (%) Survival		.0 26		.0 25		.38
a WDFW agency code prefix is 63		20	1 0.	4.3	1 0	.50

WDFW agency code prefix is 63.
 Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year Smolts Released Fish Size (g) CWT Codes ^a Release Year	117 3	09 ,824 5 /65	24 113,049 51 5 55/66		2010 102,169 32 60/75 2012	
Agency	Observed	Estimated	Observed	Estimated	Observed	Estimated
(fishery/location) WDFW	Number	Number	Number	Number	Number	Number
Tucannon River Kalama R., Wind R. Fish Trap - F.W. Treaty Troll	4	88	6	126	10	115
Lyons Ferry Hatch. ^b F.W. Sport Non-treaty Ocean Troll	16	16	40	40	17	17
ODFW Test Net, Zone 4 Treaty Ceremonial Three Mile, Umatilla R. Spawning Ground Fish Trap - F.W. F.W. Sport Hatchery Columbia R. Gillnet Columbia R. Sport Juv. Marine Seine			1	2		
CDFO Non-treaty Ocean Troll Mixed Net & Seine Ocean Sport USFWS	1	4				
Warm Springs Hatchery Dworshak NFH NMFS						
Juvenile Trawl Sample					1	1
Total Returns	21	108	47	168	28	133
Tucannon (%) Out-of-Basin (%) Commercial Harvest (%) Sport Harvest (%) Treaty Ceremonial (%) Other (%)	0 0 3 0 0	5.3 .0 .0 .7 .0 .0	0 1 0 0 0	3.8 .0 .2 .0 .0	000000000000000000000000000000000000000	9.2 0.0 0.0 0.0 0.0 0.0
Survival	0.	09	0.	15	0	.13

^a WDFW agency code prefix is 63.

^b Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year Smolts Released Fish Size (g) CWT Codes ^a Release Year	96, 60	010 984 66 /76 012	2011 227,703 33 64/41 2013		2011 27,748 33 64/42 2013	
Agency	Observed	Estimated	Observed	Estimated	Observed	Estimated
(fishery/location)	Number	Number	Number	Number	Number	Number
WDFW						
Tucannon River Kalama R., Wind R. Fish Trap - F.W. Treaty Troll	10	122	93	674	5	36
Lyons Ferry Hatch. ^b F.W. Sport Non-treaty Ocean Troll	22	22	27	27	2	2
Non-treaty Ocean Tron						
ODFW Test Net, Zone 4 Treaty Ceremonial Three Mile, Umatilla R. Spawning Ground Fish Trap - F.W. F.W. Sport Hatchery Columbia R. Gillnet Columbia R. Sport			4	19		
Juv. Marine Seine Non-treaty Ocean Troll			1	4		
CDFO Non-treaty Ocean Troll Mixed Net & Seine Ocean Sport						
USFWS Warm Springs Hatchery Dworshak NFH						
IDFG						
Hatchery						
Total Returns	32	144	125	724	7	38
Tucannon (%) Out-of-Basin (%) Commercial Harvest (%) Sport Harvest (%) Treaty Ceremonial (%)	0 0 0	0.0 .0 .0 .0	0 3 0	5.8 .0 .2 .0	(00.0 0.0 0.0 0.0 0.0
Other (%)		.0		.0		0.0
Survival		15		32		.14

^a WDFW agency code prefix is 63.

^b Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year		012		12		013	
Smolts Released	179,400		21,101		179,494		
Fish Size (g)	32		32		37		
CWT Codes ^a		/85		/86		67/42	
Release Year		014		14		015	
Agency	Observed	Estimated	Observed	Estimated	Observed	Estimated	
(fishery/location)	Number	Number	Number	Number	Number	Number	
WDFW	0.4	40.5	_		400		
Tucannon River	96	406	7	36	108	233	
Kalama R., Wind R.							
Fish Trap - F.W.							
Treaty Troll	5.6	70	2	2	0.5	0.5	
Lyons Ferry Hatch.b	56	58	3	3	85	85	
F.W. Sport	1	1			2	4	
Non-treaty Ocean Troll	1	1			2	4	
ODFW							
Test Net, Zone 4					1	1	
Treaty Ceremonial					1	-	
Three Mile, Umatilla R.							
Spawning Ground							
Fish Trap - F.W.							
F.W. Sport							
Hatchery	1	1					
Columbia R. Gillnet							
Columbia R. Sport							
Juv. Marine Seine							
Non-treaty Ocean Troll							
CDEO							
CDFO Non-treaty Ocean Troll							
Mixed Net & Seine							
Ocean Sport							
USFWS							
Warm Springs Hatchery							
Dworshak NFH							
NMFS	_						
Juvenile Trawl Sample	1	1	4.5		1	1	
Total Returns	155	467	10	39	197	324	
Tucannon (%)		0.4		0.0	-	8.2	
Out-of-Basin (%)		.2		.0		0.0	
Commercial Harvest (%)		.2		.0		1.2	
Sport Harvest (%)		.0		.0		0.0	
Treaty Ceremonial (%) Other (%)		.0 .2		.0 .0).0).6	
Otner (%) Survival		.2 26		.0 18).6 .18	
a WDFW agency code prefix is 63		20	<u> </u>	10	1 0	.10	

WDFW agency code prefix is 63.
 Fish trapped at TFH and held at LFH for spawning.

Appendix J (continued). Observed and estimated recoveries of coded-wire tagged salmon released into the Tucannon River with percent return to the Tucannon Basin, out-of-basin returns, and estimated survival and exploitation rates for the 1985-2015 brood years. (Data downloaded from RMIS database on 2/13/19.)

Brood Year Smolts Released Fish Size (g)	20,	113 373 7	2014 ^c 216,295		187	015° 7,601 40
CWT Codes ^a	67.	/43	40 68/84		70)/39
Release Year		15)16	2017	
Agency	Observed	Estimated	Observed	Estimated	Observed	Estimated
(fishery/location) WDFW	Number	Number	Number	Number	Number	Number
Tucannon River Kalama R., Wind R.	15	20	110	123		
Fish Trap - F.W. Treaty Troll Lyons Ferry Hatch. ^b F.W. Sport Non-treaty Ocean Troll	6	6	19	19		
ODFW Test Net, Zone 4 Treaty Ceremonial Three Mile, Umatilla R. Spawning Ground Fish Trap - F.W. F.W. Sport Hatchery Columbia R. Gillnet Columbia R. Sport Juv. Marine Seine Non-treaty Ocean Troll	1	5	1	1	1	1
CDFO Non-treaty Ocean Troll Mixed Net & Seine Ocean Sport						
USFWS Warm Springs Hatchery Dworshak NFH						
NMFS Juvenile Trawl Sample			1	1		
Total Returns	22	31	131	144	1	1
Tucannon (%) Out-of-Basin (%)	83 0	3.9 .0	98 0	8.6 i.0	1(0.00
Commercial Harvest (%) Sport Harvest (%)		5.1 .0).7).0).0).0
Treaty Ceremonial (%)	0	.0	0	0.0	(0.0
Other (%)		.0		0.7		0.0
Survival	0.	15	0.	07	0	.00

^a WDFW agency code prefix is 63.

b Fish trapped at TFH and held at LFH for spawning.
 c Data for the 2014 and 2015 brood years are incomplete.

Appendix K: Summary of egg distribution, egg loss, ponding numbers, and mean size for the LFH and TFH reared groups (2011-2013 brood years)

Appendix K. Summary of egg distribution, egg loss, ponding numbers, and mean size for the LFH and TFH reared groups (2011-2013 brood years) of Tucannon River spring Chinook.

	BY11	BY12	BY13
Number of eggs collected	325,701	269,514	275,188
Mortality to eye-up	14,551	15,262	8,357
Mortality to eye-up (%)	4.47	5.66	3.04
Live eggs left in trays	311,150	254,252	266,831
LFH:			
Live eggs reared at LFH	281,106	224,240	236,831
Additional egg loss	5,935	8,219	2,772
Additional egg loss (%)	2.11	3.67	1.17
Initial ponding numbers	275,171	216,021	234,059
TFH:			
Transfer from LFH to TFH	30,044	30,012	30,000
Additional egg loss	137	563	429
Additional egg loss (%)	0.46	1.88	1.43
Initial ponding numbers	29,907	29,449	29,571
January Sampling			
LFH – mean length (c.v.)	110.0 mm (12.3)	122.8 mm (13.0)	132.6 mm (17.3)
TFH – mean length (c.v.)	114.1 mm (11.7)	117.5 mm (8.5)	129.1 mm (17.8)
April Sampling – LFH & TFH			
Mean length (c.v.)	136.7 mm (17.9)	136.4 mm (15.2)	142.8 mm (15.4)

This program receives Federal financial assistance from the U.S. Fish and Wildlife Service Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. The U.S. Department of the Interior and its bureaus prohibit discrimination on the bases of race, color, national origin, age, disability and sex (in educational programs). If you believe that you have been discriminated against in any program, activity or facility, please contact the WDFW ADA Program Manager at P.O. Box 43139, Olympia, Washington 98504, or write to

Department of the Interior Chief, Public Civil Rights Division 1849 C Street NW Washington D.C. 20240