Snake River Spring/Summer Chinook ESU 2010 Current Status Updates

Outline

Background: ICTRT Viability Criteria

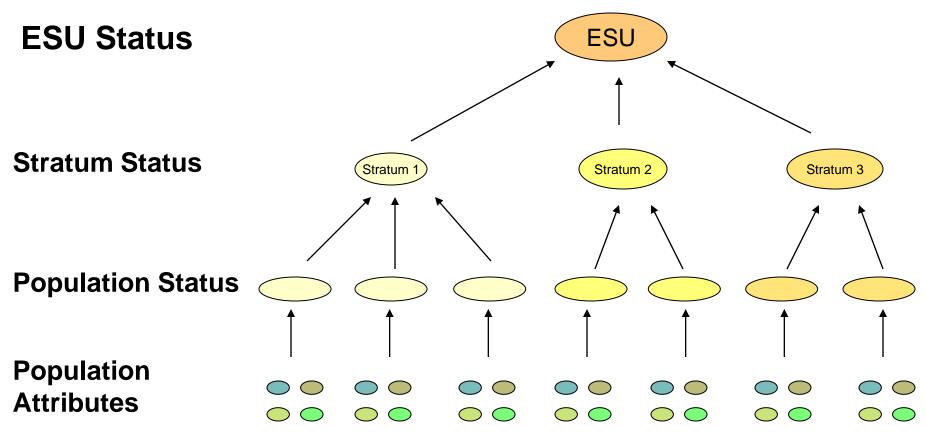
<u>Current ESU status</u> - two questions:

How has status changed relative to prior BRT status reviews?

- 2005 Review
- Time of listing (1997)

What is the current status of the ESU relative to viability and recovery criteria?

Background


- Initial TRT tasks
 - Identify historical populations
 - Identify "viability criteria" for each population
 - Identify guidelines for viable ESUs (e.g., how many and which populations?)
- Viable Salmonid Populations and ESUs http://www.nwfsc.noaa.gov/assets/25/5561_06162004_143739_tm42.pdf (link from TRT publications webpage)
- TRT Reports:

http://www.nwfsc.noaa.gov/trt/index.cfm

- Individual TRT sites
 - ESU Populations
 - Draft Viability Criteria (ESU & Population)
 - Status assessments and analyses
 - Recovery plan reviews

TRT Hierarchical Criteria

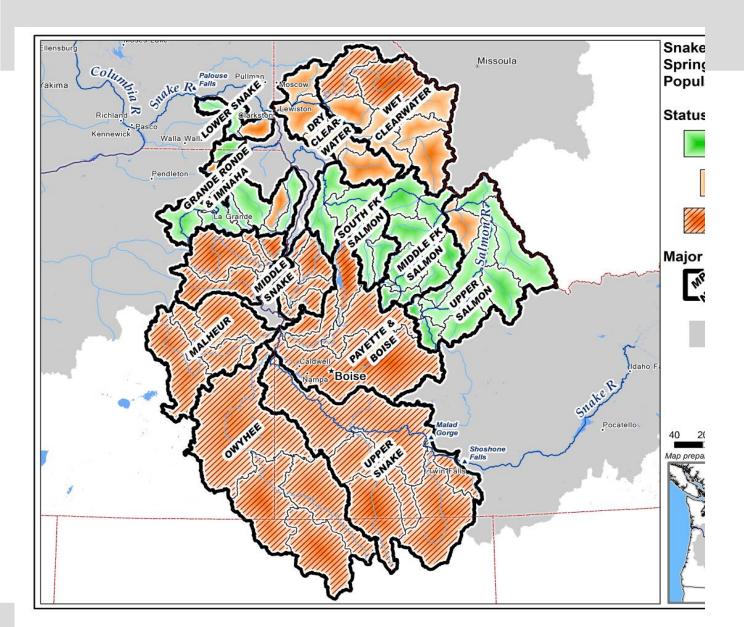
Abundance ,productivity Spatial structure, diversity

General Approach: ESU Viability

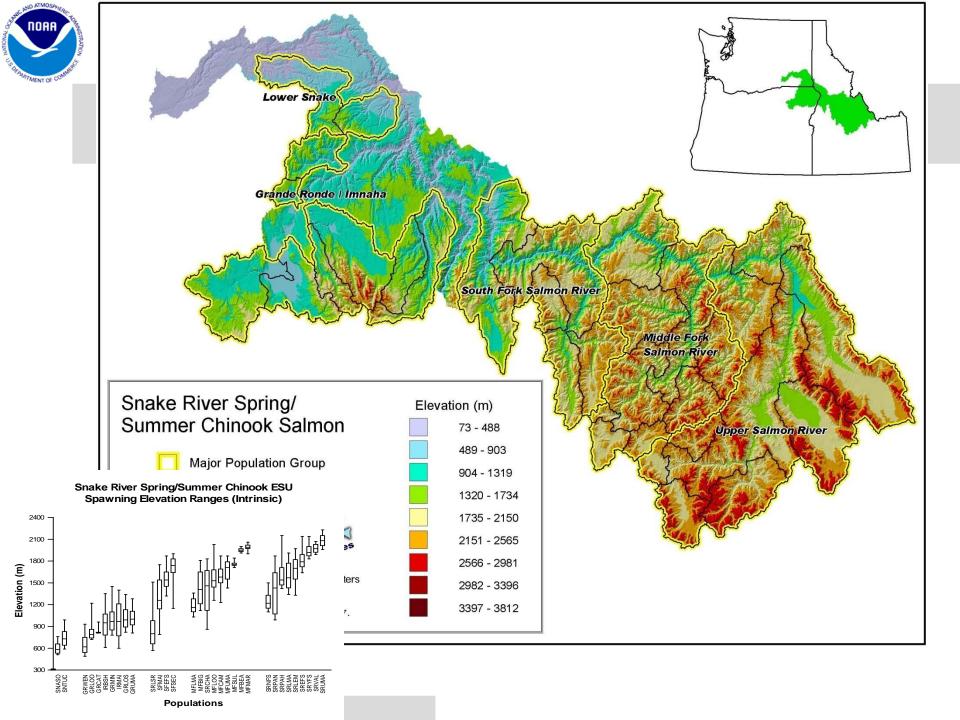
ESU Level Criteria

- Expressed in terms of the desired status of populations within Major Population Groupings
- Populations Key level in ESU hierarchy
- Population Level Criteria
 - Abundance & Productivity
 - Spatial Structure & Diversity
 - Integrating these components for a population

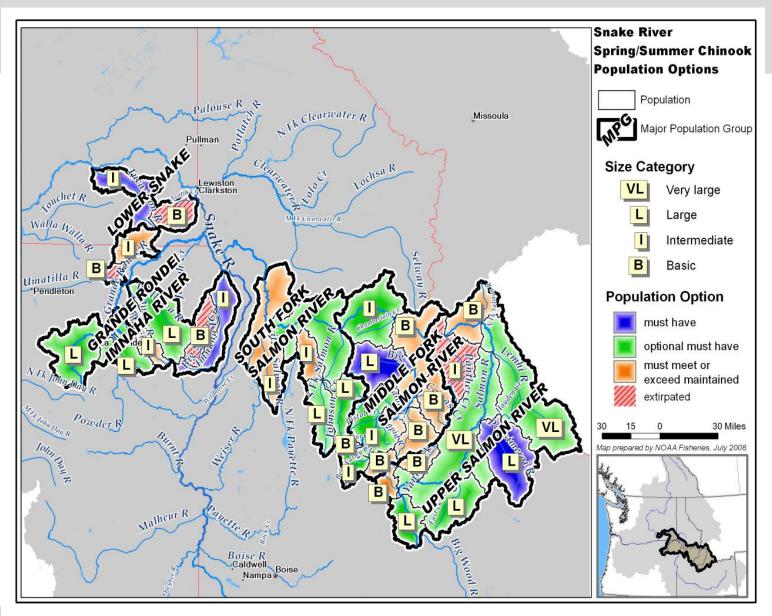
Identifying Historical Populations


- Starting point: Historical distribution on the landscape
 - Early Field studies
 - Anecdotal reports, fisheries records
 - Habitat analyses, natural barriers
- Minimum area to sustain a functioning independent population

Identifying Major Population Groups (within ESU strata)


- Emphasis on:
 - Genetics
 - Environmental and Habitat characteristics
 - e.g., Ocean basins, ecoregions, elevation
 - Life History patterns
 - e.g., Adult return run timing, demographic correlations, age at return

ESU Level Criteria

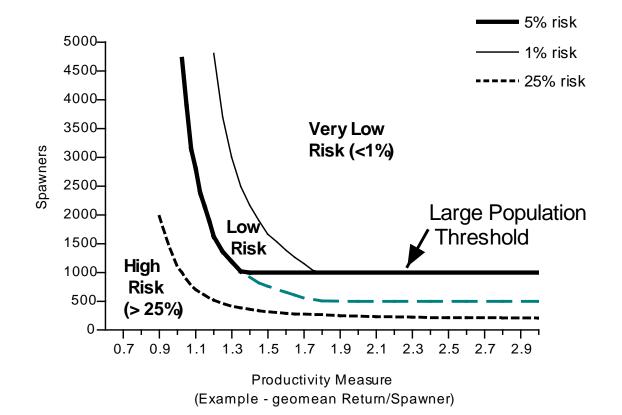

- Viable Salmonid Population (VSP) Guidelines
 - Consistent with historical setting, Multiple populations, some geographically widespread, some in close proximity to one another.
 - All Populations within an ESU should not share the same catastrophic risk.
 - Populations displaying diverse life histories/phenotypes should be maintained
 - Some populations should exceed VSP guidelines.

ESU Viability Criteria (ICTRT)

- An ESU would have a high probability of persistence if:
 - At least one-half of the historical populations (minimum of 2) in each extant Major Grouping are meeting population viability criteria. (Major extirpated areas considered on a case by case basis.)
 - High viability populations should include all major life history patterns and representative number of large/intermediate populations.
 - At least one population in each extant strata should be rated at Very Low risk.
 - The remaining extant populations are maintained i.e., not in immediate danger of extinction
 - Note: For some multi-population ESUs, there may be combinations of pop status across major groupings that could result in low risk without a requirement that all major groupings individually meet criteria case by case consideration.

Population Viability

- VSP Guidelines (McElhany et al., 2000) identify four basic components to consider:
 - Abundance
 - Productivity
 - Spatial Structure
 - Diversity



Abundance/Productivity Criteria

- Abundance refers to the average number of spawners in a population over a generation or more.
- Productivity (or population growth rate) refers to the performance of the population over time.
- Abundance should be high enough that:
 - In combination with intrinsic productivity, declines to critically low levels would be unlikely assuming recent patterns of environmental variability
 - Compensatory processes provide resilience to the effects of short-term perturbations
 - Within population substructure is maintained (e.g., multiple spawning patches, etc)

Example Viability Curve: ICTRT

Washington Lower Columbia Recovery Plan Diagram

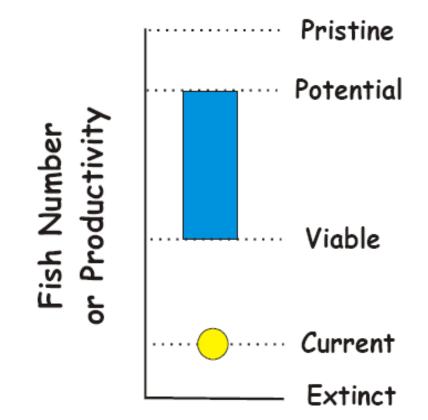


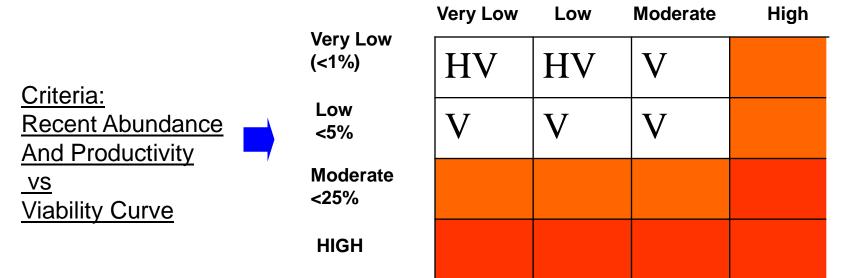
Figure 11. Schematic relating population abundance and productivity to viability levels identified by the Willamette/Lower Columbia Technical Recovery Team and population goals described by the recovery scenario.

Population Level: Spatial Structure Considerations

- Spatial Structure refers to the geographic distribution of a population and the processes supporting that distribution.
- Basic rationale:
 - Multiple spawning reaches within a population provides protection against local catastrophic loss
 - Some production areas may be inherently more productive than others – potentially serving as sources to a broader range of areas after prolonged periods of low survival, etc.

Population Criteria: Diversity Considerations

- Traits and Life History strategies
 - Loss of major life history strategies
 - Reductions/changes in traits
- Genetic Characteristics
 - Direct measures
 - Indirect: Influences of artificial production
- Dispersal and Gene Flow Effects
 - Gaps in spawning
 - Selective effects of human activities
 - Spawning distribution vs habitat types

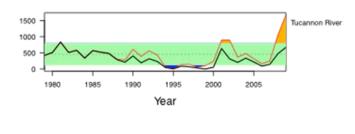


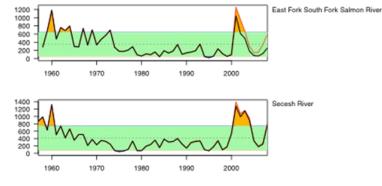
Spatial Structure/Diversity RISK

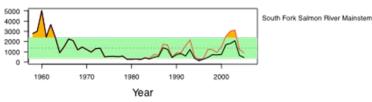
Assessing Population Viability: ICTRT

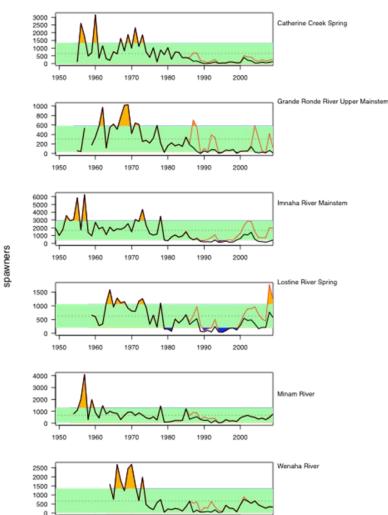
<u>Criteria: Distribution,</u> <u>Life history/genetics</u> <u>Supporting processes</u>

Abundance & Productivity RISK


V = Viable population




GoalIntegrating SS/D metricsGoalMechanismFactorMetrics							
Goal	Mechanism	Factor	Metrics				
A Allowing notural		a. number and spatial arrangement of spawning areas.	Number of MaSAs, distribution of MaSAs, and quantity of habitat outside MaSAs.				
A. Allowing natural rates and levels of spatially-mediated	1. Maintain natural distribution of spawning areas.	b. Spatial extent or range	Proportion of historical range occupied and presence/absence of spawners in MaSAs				
processes.		c. Increase or decrease gaps between spawning areas.	Change in occupancy of MaSAs that affects connectivity within the population.				
	1. Maintain natural	a. Major life history strategies.	Distribution of major life history expression within a population				
	patterns of phenotypic and genotypic expression.	b. Phenotypic variation.	Reduction in variability of traits, shift in mean value of trait, loss of traits.				
		c. Genetic variation.	Analysis addressing within and between population genetic variation.				
		a. Spawner composition.	(1) Proportion of natural spawners that are unnatural out-of ESU spawners.				
	2. Maintain natural		(2) Proportion unnatural out-of MPG spawners.				
B. Maintaining natural levels of variation.	patterns of gene flow.		(3) from a within MPG brood stock program, or within population (not best practices) program				
			(4) Proportion local (within population) broodstock program using best management practices.				
	3. Maintain occupancy available habitats	a. Distribution across habitat types.	Change in occupancy across ecoregion types				
	4.Maintain integrity of natural systems.	a. Selective change in natural processes or impacts.	Ongoing anthropogenic activities inducing selective mortality or habitat change within or out of population boundary				



Abundance: Lower Salmon, South Fork and Grande Ronde/Imnaha MPGs

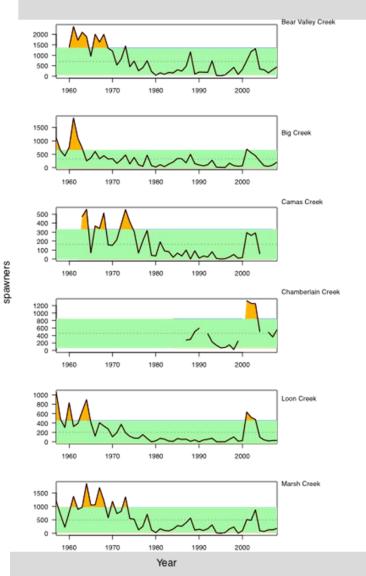
1950

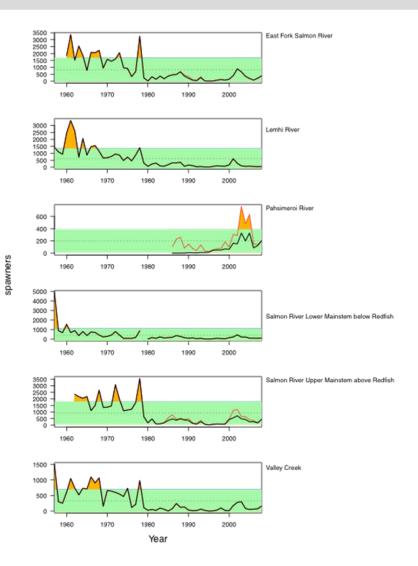
1960

1970

1980

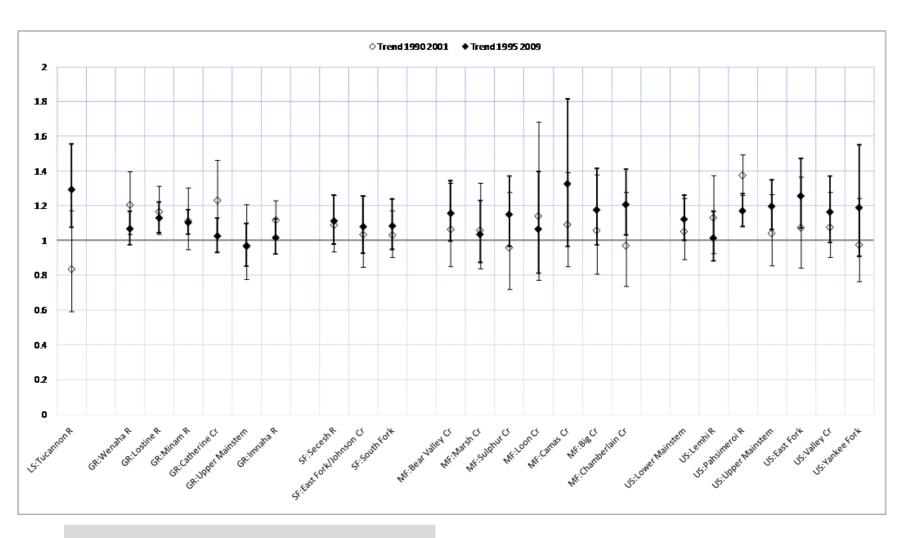
Year


1990

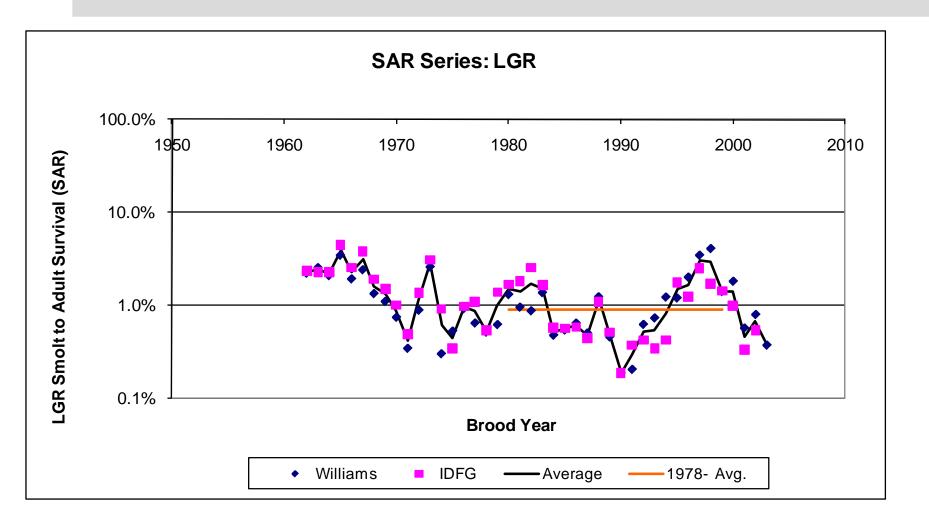

2000

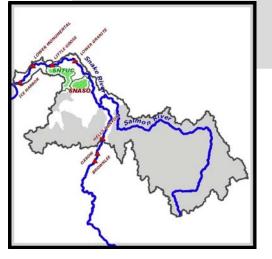
spawners

Abundance: Middle Fork and Upper Salmon MPGs



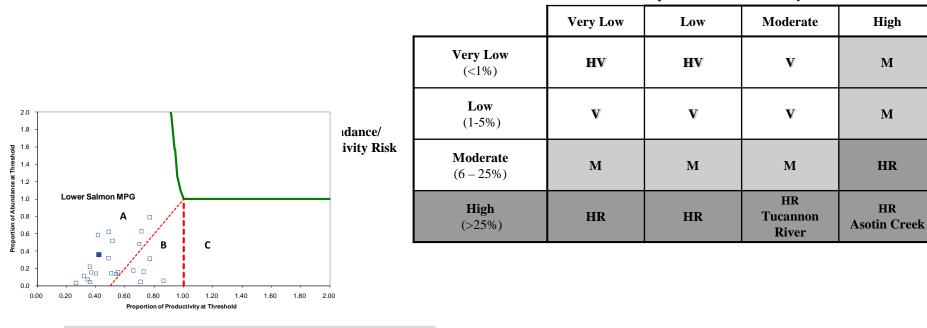
Populations: Natural origin spawner abundance (most recent 5 year brood cycle)


Category	LOWER SNAKE	GRANDE RONDE	SOUTH FORK	MIDDLE FORK	UPPER SALMON
UP (CHG>25%)	1	4	3	5	6
SAME		1		1	2
DOWN (CHG>25%)		1			
	1 (EXP)	2 (EXP)		2 (INS)	2 (INS) 1 (EXP)

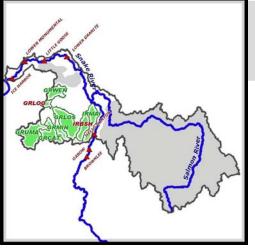

Populations: Recent Trend in natural origin spawner abundance

Tucannon: SS(s), ,phen, HAT Asotin: (functionally extirpated)

Spatial Structure/Diversity Risk

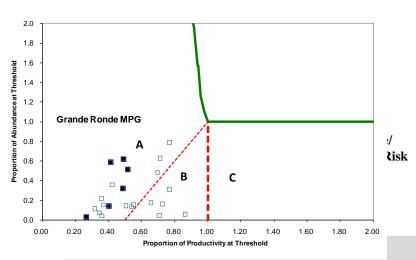

High

Μ

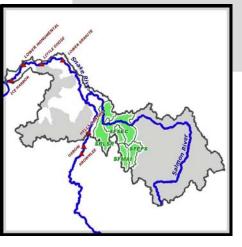

Μ

HR

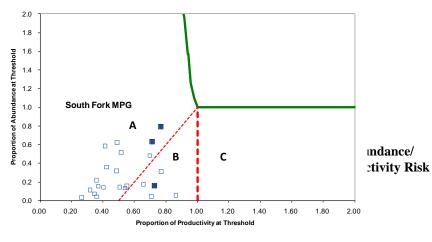
HR



	Spati	al Proce	sses	Diversity						
Population	Structure	Range	Gaps	Life History Patterns	Pheno Var.	Genetics	Spawner Composition	Ecoregion Distribution	Selectivity	
Wenaha River	М	L	L	VL	L	М	H (a.1)	L	L	
Lostine / Wallowa Rivers	L	М	L	М	М	L	H (a.1, a.4)	L	L	
Minam River	М	L	L	VL	L	М	H (a.1)	L	L	
Upper Grande Ronde River	М	Н	н	М	М	М	H (a.1)	L	M (hb)	
Catherine Creek	М	М	М	М	М	М	H (a.1, a.4)	Μ	M (hb)	
Imnaha River	М	L	L	L	L	М	H (a.4)	L	M (ht)	
Lookingglass Creek	extinct	extinct	extinct	extinct	extinct	extinct	extinct	extinct	extinct	
Big Sheep Creek ¹	Н	М	М	L	М	М	H (a.3)	L	L	

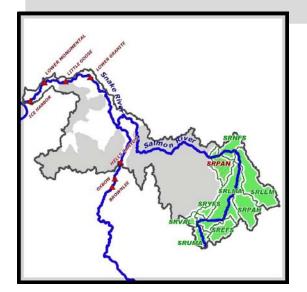

Spatial Structure/Diversity Risk

	Very Low	Low	Moderate	High
Very Low (<1%)	HV	HV	V	М
Low (1-5%)	V	V V		М
Moderate (6 – 25%)	М	М	М	HR
High (>25%)	HR	HR	HR Wenaha Lostine/Wallowa Minam Catherine Imnaha	HR Upper Grande Ronde

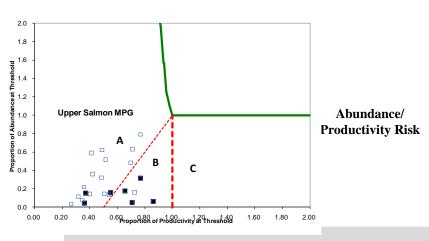

Т

South Fork Salmon MPG

	Spati	al Proce	sses	Diversity						
Population	Structure	Rang e	Gaps	Life History Patterns	Pheno Var.	Genetics	Spawner Composition	Ecoregion Distribution	Selectivity	
South Fork	L	VL	L	L	L	М	H (a.4)	L	L	
	М	L	L	VL	L	L	L	L	L	
East Fork South Fork Salmon River	L	VL	L	VL	L	L	M (a.4)	L	L	
Little	М	L	L	VL	L	L	L	L	L	


	Spatial Structure/Diversity Risk						
	Very Low	Low	Moderate	High			
Very Low (<1%)	HV	HV	V	М			
Low (1-5%)	V	v	V	М			
Moderate (6 – 25%)	М	М	М	HR			
High (>25%)	HR	HR Secesh R. E. Fork S. Fork Little Salmon	HR S. Fork Salmon	HR			

CRIMTMENT OF COMMU		Spatial Processes Diversity								
Middle Fork Salmon River MPG	Populatio n	Structure	Rang e	sses Gaps	Life History Pattern S	Pheno Var.	Genetics	Spawner Compositio n	Ecoregion Distribution	Selectivity
and the second sec	Chamberlain Creek	М	VL	L	L	VL	VL	VL	М	L
ONE ROUND CORE OF A CONSTRUCTION	Big Creek	L	VL	VL	L	L	М	VL	L	L
	Lower Middle Fork Salmon River	Н	L	L	L	L	М	VL	М	L
	Camas Creek	Н	VL	L	L	L	М	VL	L	L
Salmod See	Loon Creek	Н	VL	L	L	L	М	VL	L	L
MELINA CAM	Upper Middle Fork Salmon River	Н	VL	L	L	L	М	VL	L	L
MFBEA ZMFMAR	Sulphur Creek	Н	VL	L	L	L	М	VL	L	L
2 thinks	Bear Valley Creek	VL	VL	VL	L	L	L	VL	L	L
	Marsh Creek	М	VL	L	L	L	L	VL	L	L
					- -		Spatial Structu			
20					Ve	ry Low	Low	Moder	ate Hig	gh
2.0 1.8 -				ery Low (<1%)		HV	HV	v	M	[
10 10 10 10 10 10 10 10 10 10 10 10 10 1				Low (1-5%)		V	V	v	Μ	[
biodesidesidesidesidesidesidesidesidesidesi	Abu	ndance/		loderate 5 – 25%)		Μ	М	М	н	R
A B C C C C C C C C		tivity Risk		High (>25%)		HR	HR Chamberlain Marsh Cr	HR Big C Lower M Fork Cama Loon Upper M Fork	r. Jid- s HI 1 Jid-	Ł



Upper Salmon MPG

Population		SSD Fa	actors	
Lemhi:	SS,LF	l,phen	,	SEL
Pahsimeroi:	SS,LF	н	,GEN,	HAT,SEL
Yankee Fork:	SS,		GEN,	HAT,SEL
East Fork:			GEN,	SEL
North Fork:	SS			
Upper Salmon	:		gen,	hat
US Lower Main	1: SS,	phen	Ì	
Valley:	SS		gen	
Panther (extirp	oated)			

Spatial	Structu	re/Diver	sity Risk	

	Very Low	Low	Moderate	High
Very Low (<1%)	HV	HV	V	М
Low (1-5%)	v	V	V	М
Moderate (6 – 25%)	М	М	М	HR
High (>25%)	HR	HR North Fork Lower Main.	HR Valley Upper Main.	HR Lemhi Pahsimeroi East Fork Yankee Fork

Summary

- Population level status ratings remain at high risk across all MPGs within the ESU.
- Although recent natural spawning abundance estimates have increased, all populations remain below minimum natural origin abundance thresholds.
- Relatively low natural production rates and spawning levels below minimum abundance thresholds remain a major concern across the ESU.
- The ability of populations to be self-sustaining through normal periods of relatively low ocean survival remains uncertain.
- Factors cited by the 2005 BRT (Good et al. 2005) remain as concerns or key uncertainties for several populations