

LOWER SNAKE RIVER COMPENSATION PLAN Itatchery Program


An IDACORP Company

## IPC AND LSRCP MONITORING AND EVALUATION PROGRAMS IN THE STATE OF IDAHO: <br> CALENDAR YEAR 2017 AND BROOD YEAR 2011 HATCHERY CHINOOK SALMON REPORTS



Matthew J. BeInap
Fisheries Biologist, Idaho Department of Fish and Game
Forrest Bohlen
Data Management Specialist, Pacific States Marine Fisheries Commission
Corey Dondero
Fisheries Technician, Pacific States Marine Fisheries Commission
Riley Brown
Science Technician, Idaho Power Company

IDFG Report Number 20-14
August 2020

## TABLE OF CONTENTS

Page
TABLE OF CONTENTS ..... i
LIST OF TABLES ..... iii
LIST OF FIGURES ..... v
LIST OF APPENDICES ..... vi
OVERVIEW ..... 1
CHAPTER 1 ..... 2
2017 CALENDAR YEAR HATCHERY CHINOOK SALMON REPORT: ..... 2
IDAHO POWER COMPANY AND LOWER SNAKE RIVER COMPENSATION PLAN MONITORING AND EVALUATION PROGRAMS IN THE STATE OF IDAHO ..... 2
INTRODUCTION ..... 3
JUVENILE PRODUCTION AND RELEASE ..... 6
Juvenile Survival ..... 8
ADULT RETURNS ..... 9
Preseason Forecasted Adult Returns ..... 9
Adult Return Estimates to Bonneville and Lower Granite Dams Based on PIT Detections ..... 10
Adult Return Estimates to Bonneville and Lower Granite Dams Using Parentage Based Tagging ..... 12
2017 LGD Trap Operation ..... 13
Partitioning Window Counts to Stock and Age ..... 14
Comparison of PIT Tag and PBT Return Estimates to Lower Granite Dam ..... 17
Fallback / Reascension Rates and After-Hours Passage Rates at Lower Granite Dam ..... 19
Hatchery Weir Returns ..... 20
Sport Fisheries in Idaho ..... 21
Fishery Catch Composition of Sport Harvested Chinook Salmon ..... 25
ACKNOWLEDGEMENTS ..... 27
LITERATURE CITED ..... 28
CHAPTER 2 ..... 30
IDAHO POWER COMPANY AND LOWER SNAKE RIVER COMPENSATION PLAN CHINOOK SALMON FISH HATCHERY EVALUATIONS—IDAHO ..... 30
ABSTRACT ..... 31
INTRODUCTION ..... 32
Spawning and Eye-Up ..... 32
Green-Egg-to-Release Survival ..... 33
Fish Health ..... 33
McCall Hatchery ..... 34
Sawtooth Hatchery ..... 34
Clearwater Hatchery ..... 34
Rapid River Hatchery ..... 34
Pahsimeroi Hatchery ..... 34
Juvenile Releases ..... 35
Juvenile Migration Timing and Survival ..... 37
Adult Returns and Harvest Information ..... 37
Smolt-to-Adult Returns and Smolt-to-Adult Survival ..... 41
Progeny-to-Parent Ratio ..... 42
SUMMARY ..... 43
Spawning, Rearing, and Release ..... 43
Adult Survival Rates. ..... 43
ACKNOWLEDGEMENTS ..... 44
LITERATURE CITED ..... 45

## LIST OF TABLES

Page
Table 1. Adult spring- and summer-run Chinook Salmon mitigation goals for LSRCP-funded hatcheries located in Idaho and operated by IDFG. Return goals listed for satellite facilities are a subset of the overall hatchery return goal (in bold font) ..... 3
Table 2. Adult spring and summer run Chinook Salmon release goals for IPC- funded hatcheries located in Idaho and operated by IDFG. ..... 4
Table 3. Juvenile Chinook Salmon released in 2017 from hatcheries operated by IDFG ..... 7
Table 4. Juvenile hatchery Chinook Salmon survival and travel time estimates to Lower Granite Dam (LGD) for release year 2017 ..... 8
Table 5. Hatchery Chinook Salmon survival estimates (percent survival) to Lower Granite Dam by release site from 2008-2017 and annual weighted averages across release sites from 2008 to 2016 for comparison. ..... 9
Table 6. Summary of forecasted adult (two- and three-ocean) spring/summer Chinook Salmon returns in 2017 by hatchery and release site to the Columbia River mouth, Bonneville Dam, and Lower Granite Dam. ..... 10
Table 7. Escapement of segregated adult spring/summer Chinook Salmon to Bonneville Dam in return year 2017. ..... 11
Table 8. Estimated escapement of segregated adult spring/summer Chinook Salmon to Lower Granite Dam in return year 2017. ..... 11
Table 9. Comparison of forecasted and actual returns of adult Chinook Salmon to Bonneville Dam in 2017. Adults includes 2- and 3-ocean age fish. ..... 12
Table 10. Escapement of clipped and unclipped hatchery Chinook Salmon and summary of time stratification and sampling scheme for the 2017 adult migration at Lower Granite Dam. ..... 13
Table 11. Age structure of hatchery origin Chinook Salmon sampled at Lower Granite Dam in 2017 by clipped or unclipped adipose fin mark ..... 14
Table 12. Release group -specific brood year 2012, 2013, and 2014 returns of adult Chinook Salmon to Lower Granite Dam in 2017 based on PBT analysis (bootstrapped 90\% confidence intervals). ..... 15
Table 13. Comparison of PBT- and PIT tag-based estimates of returns to LGD in 2017. ..... 18
Table 14. Fallback and reascension rates for PIT-tagged jack and adult Chinook Salmon by release site, at Lower Granite Dam in return year 2017 with return year 2016 totals for comparison ..... 19
Table 15. Percent of after counting hours passage, by release site, at Lower Granite Dam in return year 2017 for jacks and adults with return year 2016 totals for comparison ..... 20
Table 16. Adult spring/summer Chinook Salmon captured at IDFG hatchery weirs, by weir, sex, age, and origin for return year 2017. ..... 21
Table 17. Dates and locations of spring/summer Chinook Salmon sport fisheries conducted in Idaho in 2017. ..... 23
Table 18. Dates and locations of fall Chinook Salmon sport fisheries conducted in Idaho in 2017 ..... 23
Table 19. Angler effort and catch data from all spring, summer, and fall Chinook Salmon sport fisheries conducted in Idaho in 2017. ..... 23
Table 20. Spring/summer Chinook Salmon sport harvest management metrics and harvest rates for adults and jacks, by release site for 2017. ..... 24
Table 21. Composition of 2017 spring/summer Chinook Salmon sport harvest in Idaho by fishery, release group, and age. ..... 25
Table 22. Summary of 2017 fall Chinook Salmon sport harvest in Idaho by fishery and age. ..... 26
Table 23. Brood year 2011 spring/summer Chinook Salmon hatchery survival and production metrics for LSRCP and IPC hatcheries operated by IDFG (averages in parentheses). ..... 33
Table 24. Egg collection and survival metrics for brood year 2011 Chinook Salmon collected at LSRCP and IPC hatcheries operated by IDFG. ..... 33
Table 25. Release details of brood year 2011 Chinook Salmon from LSRCP and IPC facilities operated by IDFG. ..... 36
Table 26. Survival, migration, and arrival timing of brood year 2011 Chinook Salmon smolts at Lower Granite Dam (LGD) from releases at LSRCP and IPC fish hatcheries located in Idaho. ..... 37
Table 27. Harvest and escapement of hatchery-origin Chinook Salmon from brood year 2011. ..... 38
Table 28. Returns, estimated harvest, and harvest rates above and below Lower Granite Dam from brood year 2011 Chinook Salmon released from Idaho Power Company and Lower Snake River Compensation Plan facilities in Idaho. ..... 41
Table 29. Brood year 2011 smolt-to-adult returns from release site to Lower Granite Dam and smolt-to-adult survivals for all Chinook Salmon release groups from LSRCP and IPC hatcheries operated by IDFG. ..... 42
Table 30. Progeny-to-parent ratios for brood year 2011 hatchery Chinook Salmon from LSRCP and IPC hatcheries operated by IDFG. Project area is measured as returns to LGD. ..... 42
Table 31. Juvenile release numbers compared to release goals for brood year 2011 hatchery Chinook Salmon from LSRCP and IPC hatcheries operated by IDFG. ..... 43
Table 32. Adult mitigation goals and actual return numbers for brood year 2011 hatchery Chinook Salmon from LSRCP facilities operated by IDFG. SARs were estimated from release-site to Lower Granite Dam. ..... 43

## LIST OF FIGURES

## Page

Figure 1. State-, federally-, and tribally-operated anadromous fish hatcheries located in the Clearwater, Salmon, and mid-Snake river basins along with associated satellite facilities and juvenile release locations.

## LIST OF APPENDICES

Page
Appendix A. In-hatchery metrics for spawning and early rearing of Chinook Salmon at McCall, Pahsimeroi, Clearwater, Rapid River, and Sawtooth fish hatcheries for brood years 1991 through 2011. ..... 46
Appendix B. Green-egg-to-smolt survival rates for LSRCP and IPC facilities operated by IDFG for brood years 1991 through 2011. Recent 5 -year average was calculated using brood years 2006-2010 for comparison to brood year 2011 ..... 49
Appendix C. Age composition of total (harvest, and escapement) Chinook Salmon returns from LSRCP and IPC facilities operated by IDFG for brood years 1991 through 2011. ..... 50
Appendix D. Number of juveniles released, size at release, juvenile survival to LGD, and SAR and SAS for smolts released from LSRCP and IPC facilities for brood years 1991 through 2011 by facility and by funding source. Adult returns to LGD are based on parentage based tagging estimates from brood year 2011 forward. Total adult returns are based on PBT estimates at LGD and PIT tag conversion rates from Bonneville to LGD from brood year 2011 forward ..... 51
Appendix E. Percentage of smolt release goals met at PFH and RRFH from 1991 through 2011. ..... 56
Appendix F. Percentage of Chinook smolt release goals met at Lower Snake River Compensation Hatcheries in Idaho ..... 57

## OVERVIEW

This report contains summaries of LSRCP and IPC hatchery Chinook Salmon programs at both the calendar (2017) and brood year (2011) level. The report contains two chapters that describe monitoring and evaluation of the programs during 2017 (Chapter 1) and the performance of brood year 2011 cohorts both in the hatchery and as returning adults from 2014-2016 (Chapter 2).

## CHAPTER 1

2017 CALENDAR YEAR HATCHERY CHINOOK SALMON REPORT:
IDAHO POWER COMPANY AND LOWER SNAKE RIVER COMPENSATION PLAN MONITORING AND EVALUATION PROGRAMS

IN THE STATE OF IDAHO
January 1, 2017—December 31, 2017

By
Matthew J. Belnap
Forrest Bohlen
Corey Dondero
Riley Brown

Idaho Department of Fish and Game
600 South Walnut Street
P.O. Box 25

Boise, ID 83707

Funded by:
Idaho Power Company
1221 W. Idaho St.
Boise, ID 83702
U.S. Fish and Wildlife Service

Lower Snake River Compensation Plan Office
1387 S. Vinnell Way, Suite 343
Boise, ID 83709

Cooperative Agreement \#F16AC00027

IDFG Report Number 20-14
August 2020

## INTRODUCTION

This report details hatchery-origin spring, summer, and fall Chinook Salmon monitoring, evaluation, and management for calendar year 2017. Information is reported for Chinook Salmon from five different hatcheries operated by the Idaho Department of Fish and Game (IDFG). These facilities include three hatcheries funded by the Lower Snake River Compensation Plan (LSRCP) and two hatcheries funded by the Idaho Power Company (IPC).

The LSRCP hatchery program specified the use of fish hatcheries to compensate for the salmon and steelhead mortality caused by the construction and operation of the four lower Snake River dams. The strategy was to produce and release enough juvenile anadromous salmonids to meet the program's adult return goals. The adult return goals were based on the estimated adult and juvenile fish losses that would result from operation of the four dams. Original loss estimates for spring- and summer-run Chinook Salmon attributable to the four lower Snake River dams were derived by applying a $15 \%$ smolt mortality rate at each of the four dams (a total estimated loss of 48\%) (U.S. Army Engineer District 1975). That expected loss was multiplied by the estimated average return of spring/summer Chinook Salmon adults $(122,200)$ to the Snake River from 19591961 (pre-dam construction) to estimate an annual average loss of 58,677 spring and summer Chinook Salmon. The loss estimate became the annual escapement goal of 58,677 spring- and summer-run (50,677 spring-run and 8,000 summer-run) Chinook Salmon to Lower Granite Dam (LGD [i.e. above the project area] [LSRCP 1991]). Additionally, an assumed 4:1 ratio of catch to above LGD escapement was used to estimate an additional loss of 234,708 in the coastwide commercial, tribal, and recreational fisheries downstream of the project area. These combined catch and escapement estimates resulted in a total mitigation goal of 293,385 adults produced annually for the LSRCP program (Table 1). It was anticipated that the majority of the harvest mitigation benefits would be distributed downstream of the project area. However, lower than expected returns of hatchery fish produced within the program and the depressed status of natural-origin fish influenced Columbia River fisheries management programs. The anticipated 4:1 distribution of benefits downstream: upstream of the project area has not been realized. Based on recent natural-origin and hatchery-origin return abundances and the current ESA listing status of Snake River stocks, it is likely that the current distribution of harvest benefits will continue into the foreseeable future.

Table 1. Adult spring- and summer-run Chinook Salmon mitigation goals for LSRCP-funded hatcheries located in Idaho and operated by IDFG. Return goals listed for satellite facilities are a subset of the overall hatchery return goal (in bold font).

| Hatchery | First Year of Operation | Run Type | LSRCP Adult Return Mitigation Goals |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Below Lower Granite Dam | Above Lower Granite Dam | Total |
| McCall | 1979 | Summer | 32,000 | 8,000 | 40,000 |
| Sawtooth | 1985 | Spring | 77,780 | 19,445 | 97,225 |
| Clearwater Hatchery | 1990 | Spring | 47,660 | 11,915 | 59,575 |
| CLW - Powell | 1989 | Spring | 10,212 | 2,553 | 12,765 |
| CLW - Red River | 1986 | Spring | 10,212 | 2,553 | 12,765 |
| CLW - Crooked River | 1990 | Spring | 27,236 | 6,809 | 34,045 |
| Total for LSRCP Facilities Operated by IDFG |  |  | 157,440 | 39,360 | 196,800 |
| Total for all LSRCP Fa | ilities |  | 234,777 | 58,677 | 293,454 |

Idaho Power Company (IPC) owns and maintains two spring/summer Chinook Salmon hatcheries that are operated by IDFG. These hatcheries were constructed as mitigation for the construction and ongoing operation of the Hells Canyon Dam Complex (Brownlee, Oxbow, and Hells Canyon dams). Rapid River Fish Hatchery resulted from mitigation mandated by the Federal Energy Regulatory Commission (FERC) that required IPC to transplant a run of spring Chinook from the Snake River to the Salmon River. Mitigation goals established through the Hells Canyon Settlement Agreement specify juvenile production targets of three million spring Chinook Salmon smolts at the Rapid River Fish Hatchery and one million summer Chinook Salmon smolts at the Pahsimeroi Fish Hatchery (Table 2). A complete description of mitigation goals and hatchery programs can be found in Sullivan et al. 2018.

Table 2. Adult spring and summer run Chinook Salmon release goals for IPC-funded hatcheries located in Idaho and operated by IDFG.

| Hatchery | First Year of Operation | Run Type | Smolt Release Goal |
| :---: | :---: | :---: | :---: |
| Rapid River | 1965 | Spring | $3,000,000$ |
| Pahsimeroi | 1968 | Summer | $1,000,000$ |
|  |  | TOTAL | $\mathbf{4 , 0 0 0 , 0 0 0}$ |

Between 2017 and 2020, the Marine Fisheries Advisory Council convened the Columbia Basin Partnership Task Force (Partnership), including members from public utilities, state governments, commercial fishers, non-governmental organizations, water users, and tribal governments, established qualitative and quantitative goals for Chinook Salmon, Steelhead, Sockeye Salmon, and Coho Salmon in the Columbia basin. Setting these goals provided stakeholders in the Columbia basin with a common currency to use during discussions regarding the status of anadromous fish. In the Partnership framework, hatchery and wild/ natural origin fish were considered separately for both qualitative and quantitative goals. Qualitative goals for hatchery fish included supplementation, mitigation, and conservation, while quantitative goals were set using historical escapement estimates and harvest estimates. Based on this process which included substantial IDFG staff technical input, the quantitative escapement goal for adult spring/ summer run Chinook Salmon above Lower Granite Dam was set at 90,000 hatchery fish and 127,000 wild/natural fish (NOAA 2019). The IDFG Commission formally adopted these goals by including them in the latest Idaho Fisheries Management Plan (IDFG 2019).


Figure 1. State-, federally-, and tribally-operated anadromous fish hatcheries located in the Clearwater, Salmon, and mid-Snake river basins along with associated satellite facilities and juvenile release locations.

## JUVENILE PRODUCTION AND RELEASE

Juvenile Chinook Salmon were released between mid-March and late-April of 2017. Release goals were met or exceeded at all facilities except for Sawtooth which met $85.4 \%$ of its release goal. We did not release juveniles in Hells Canyon in 2017 because of high river flows. Release locations are shown in Figure 1.

Table 3. Juvenile Chinook Salmon released in 2017 from hatcheries operated by IDFG.

| Migr. <br> Year | Hatchery | Rel. Site | Release <br> Date(s) | AD Only | AD/CWT | CWT Only | No Tag | PIT TAG* | Total Release |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2017 | McCall (Seg) | SFSR-Knox | 4/5 | 820,825 | 124,481 | 0 | 0 | 25,917 | 945,306 |
| 2017 | McCall (Int.) | SFSR-Knox | 4/5 | 0 | 0 | 162,604 | 188 | 25,938 | 162,792 |
| McCall Total Release |  |  |  | 820,825 | 124,481 | 162,604 | 188 | 51,855 | 1,108,098 |
| 2017 | Rapid River | Rapid R. Ponds | 3/13-4/27 | 2,897,520 | 119,002 | 0 | 0 | 51,902 | 3,016,522 |
| 2017 | Rapid River | Little Sal. R. | 3/18 | 200,000 | 0 | 0 | 0 | 0 | 200,000 |
| 2017** | Rapid River | Hells Can. Dam | -- | 0 | 0 | 0 | 0 | 0 | 0 |
| Rapid River Total Release |  |  |  | 3,097,520 | 119,002 | 0 | 0 | 51,902 | 3,216,522 |
| 2017 | Clearwater | Red River | 4/11 | 1,167,008 | 122,672 | 0 | 0 | 17,082 | 1,289,680 |
| 2017 | Clearwater | Powell Pond | 3/15 | 189,315 | 117,670 | 0 | 309,732 | 25,468 | 616,717 |
| 2017 | Clearwater | Selway R. (Spring) | 4/7 | 230,992 | 115,483 | 133,672 | 3,748 | 12,696 | 483,895 |
| 2017 | Clearwater | Selway R. (Summer) | 4/7 | 142,500 | 0 | 0 | 12,696 | 17,088 | 155,196 |
| 2017 | Clearwater | Clear Cr | 3/21 | 651,971 | 116,263 | 0 | 0 | 9,585 | 768,234 |
| 2017 | Clearwater | NF Clearwater | 4/4 | 0 | 389,115 | 0 | 0 | 17,067 | 389,115 |
| Clearwater Total Release |  |  |  | 2,381,786 | 861,203 | 133,672 | 326,176 | 98,986 | 3,702,837 |
| 2017 | Sawt (Seg.) | Sawtooth Weir | 3/29 | 993,721 | 118,574 | 0 | 0 | 18,892 | 1,112,295 |
| 2017 | Sawt (Int.) | Sawtooth Weir | 3/29 | 0 | 0 | 115,856 | 2,768 | 1,985 | 118,624 |
| 2017 | Pahsimeroi | Pahsimeroi | 4/20 | 118,163 | 0 | 0 | 0 | 0 | 118,163 |
| 2017 | Sawtooth | Yankee Fork | 4/19 | 188,280 | 0 | 0 | 0 | 2,490 | 188,280 |
| Sawtooth Total Release |  |  |  | 1,300,164 | 118,574 | 115,856 | 2,768 | 23,367 | 1,537,362 |
| 2017 | Pahsimeroi (Seg) | Pahsimeroi Ponds | 4/20-4/24 | 934,893 | 118,867 | 0 | 0 | 21,368 | 1,053,760 |
| 2017 | Pahsimeroi (Int) | Pahsimeroi Ponds | 4/16-4/24 | 0 | 0 | 67,199 | 160 | 1,003 | 67,359 |
| Pahsimeroi Total Release |  |  |  | 934,893 | 118,867 | 67,199 | 160 | 22,371 | 1,121,119 |
| Totals |  |  |  | 8,535,188 | 1,342,127 | 479,331 | 329,292 | 248,481 | 10,685,938 |

* PIT tag total is not in addition to other mark/tag columns but is included in those groups.
** No releases in Hells Canyon in 2017 because of high river flows.


## Juvenile Survival

Juvenile survival rates of PIT-tagged Chinook Salmon are estimated from release site to LGD using the PitPro program (Westhagen and Skalski 2009) developed in the School of Aquatic and Fishery Sciences at the University of Washington. Survival rates to LGD varied by release site. Chinook released at Red River site had the lowest survival to LGD in 2017 and the lowest average survival over the last ten years. Chinook released from the NF Clearwater and Clear Creek had the highest survival in the Clearwater in 2017 (Table 4). In the Salmon River, Chinook released from the three Sawtooth release groups (segregated, integrated, and Yankee Fork) had the lowest survivals to LGD. Chinook released from Pahsimeroi (segregated and integrated) had the highest survivals to LGD. The yearly-weighted average (weighted by release number) for all groups combined was higher in 2017 than the previous nine year weighted average (Table 5). Venditti et al. (2018) completed a paired release evaluation of juvenile Sawtooth integrated Chinook in 2017. Their results suggest that survival to LGD was not significantly different for Chinook released from Sawtooth Hatchery when compared to Chinook released at the County Line Bridge (approximately 15 miles upstream of Sawtooth Hatchery [Venditti et al. 2018]). These results prompted project managers to move the entire Sawtooth integrated release to the County Line Bridge. The impetus for this change was to expand the spawning distribution of Chinook above the Sawtooth weir.

Table 4. Juvenile hatchery Chinook Salmon survival and travel time estimates to Lower Granite Dam (LGD) for release year 2017.

| Release Group | PIT Tags Released | Release Date | $\begin{gathered} \hline \text { Size } \\ \text { at } \\ \text { Rel. } \\ \text { (fpp) } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Km to } \\ & \text { LGD } \end{aligned}$ | Average Travel Days | $\begin{aligned} & 50 \% \\ & \text { Passage } \\ & \text { Date } \end{aligned}$ | 80\% Arrival Window | Survival $\pm 95 \% \mathrm{Cl}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clear Creek | 9,585 | 3/20-3/21 | 16.2 | 176 | 28 | 4/24 | 4/14-5/3 | 79.8 (77.0-82.6) |
| Powell Pond | 25,468 | 3/15 | 15.2 | 321 | 38 | 4/24 | 4/14-5/3 | 62.6 (60.7-64.6) |
| Red River Pond | 17,082 | 3/23-3/29 | 16.0 | 299 | 33 | 4/30 | 4/15-5/12 | 51.4 (48.5-54.3) |
| Selway River | 17,088 | 4/7 | 16.1 | 240 | 19 | 4/26 | 4/13-5/5 | 75.0 (70.5-79.4) |
| NF Clearwater ${ }^{1}$ | 8,491 | 3/19 | 16.1 | 116 | 21 | 4/21 | 3/31-5/2 | 79.0 (75.1-82.9) |
| NF Clearwater ${ }^{2}$ | 8,576 | 3/19 | 16.1 | 116 | 21 | 4/22 | 3/31-5/2 | 80.4 (76.3-84.4) |
| SFSR (Seg.) | 25,919 | 4/5 | 20.0 | 457 | 32 | 5/6 | 4/29-5/12 | 68.3 (64.9-71.6) |
| SFSR. (Int.) | 25,938 | 4/5 | 21.0 | 457 | 31 | 5/6 | 4/27-5/12 | 72.5 (69.0-76.0) |
| Pahsimeroi (Seg.) | 21,368 | 4/20-4/24 | 13.4 | 630 | 13 | 4/28 | 4/25-5/5 | 74.3 (71.8-76.8) |
| Pahsimeroi (Int.) | 1,003 | 4/16-4/24 | 13.4 | 630 | 14 | 4/29 | 4/25-5/5 | 87.3 (72.5-102.1) |
| Rapid River Ponds | 51,902 | 3/13-4/27 | 16.7 | 283 | 29 | 5/2 | 4/21-5/11 | 65.7 (63.9-67.6) |
| Sawtooth Weir (Seg.) | 18,803 | 3/29 | 19.1 | 747 | 27 | 4/27 | 4/17-5/8 | 60.7 (58.7-62.8) |
| Sawtooth Weir (Int.) | 1,984 | 3/29 | 16.2 | 747 | 28 | 4/29 | 4/17-5/9 | 60.5 (53.4-67.5) |
| Yankee Fork | 2,490 | 4/17-4/19 | 16.7 | 730 | 35 | 5/6 | 4/30-5/12 | 62.0 (47.4-76.6) |

1 This estimate is for the baffle study treatment group released into the NF Clearwater.
2 This estimate is for the baffle study control group released into the NF Clearwater.

Arrival timing to LGD and subsequent entry timing into the estuary is an important consideration for hatchery origin spring and summer Chinook Salmon. Barging began on May 2, 2017 (CSS 2017) and based on the $50 \%$ passage date in Table 4, most of the Chinook released from IDFG hatcheries passed LGD before the date barging began in 2017.

Table 5. Hatchery Chinook Salmon survival estimates (percent survival) to Lower Granite Dam by release site from 2008-2017 and annual weighted averages across release sites from 2008 to 2016 for comparison.
$\left.\begin{array}{llllllllllllll}\hline & & & & & & & & & & & & \begin{array}{c}\text { Site } \\ \text { Ave. }\end{array} \\ \text { Hatchery } \\ \text { (2008- } \\ \text { 2016) }\end{array}\right]$

## ADULT RETURNS

Adult Chinook Salmon from brood years 2014, 2013, and 2012 returned to Idaho in 2017 as three-, four-, and five-year-old adults. This section outlines metrics of adult monitoring and adult accounting back to Bonneville Dam, LGD, sport harvest upstream of LGD, and to hatchery traps. Fall Chinook Salmon are not included in the majority of adult return summaries because of differences in management practices and data availability. We report sport harvest of fall Chinook in the Idaho Sport Harvest Section below. Reconstructed fall Chinook escapement estimates above LGD are available in Young et al. (2017).

## Preseason Forecasted Adult Returns

Forecasts of adult returns for Snake River stocks are generated by an inter-agency technical workgroup including IDFG, the Nez Perce Tribe, the Oregon Department of Fish and Wildlife, and the Washington Department of Fish and Wildlife using sibling regressions. A regression of historic jack returns vs. two-ocean returns, from the same cohort, is used to forecast a hatchery's two-ocean return. The same methodology is used to forecast three-ocean returns from the previous year's two-ocean return. The regressions use hatchery-specific run reconstructions, by age, at the Columbia River mouth. The forecasted total adult return to the Columbia River mouth, for each hatchery, is the sum of the forecasted two- and three-ocean returns. Release group-specific inter-dam conversion rates based on historic data are applied to each hatchery-specific forecast to the Columbia River mouth to generate release group-specific forecasts to LGD.

Forecasts for offsite releases are generated using surrogate release groups. For example, to forecast a return for Rapid River spring Chinook Salmon released at Hells Canyon Dam, the forecasted adult return per smolt released for Rapid River Hatchery is multiplied by the known number of smolts released at Hells Canyon Dam. Table 6 shows the 2017 adult return forecast by hatchery and stock to the Columbia River mouth, Bonneville Dam, and LGD.

Table 6. Summary of forecasted adult (two- and three-ocean) spring/summer Chinook Salmon returns in 2017 by hatchery and release site to the Columbia River mouth, Bonneville Dam, and Lower Granite Dam.

| Hatchery | Release Site | Pre-season forecast |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Columbia River Mouth | Bonneville Dam | Lower Granite Dam |
| Clearwater | Upper Selway | 961 | 812 | 593 |
| Clearwater | Powell Pond | 3,659 | 3,199 | 2,300 |
| Clearwater | Red River | 4,161 | 3,330 | 2,411 |
| Clearwater | Clear Creek | 1,772 | 1,486 | 1,085 |
| Total Clearwater R. |  | 10,553 | 8,827 | 6,389 |
| Rapid River | Rapid River | 25,847 | 20,936 | 15,809 |
| Rapid River | Little Salmon R. | 1,098 | 889 | 672 |
| Rapid River | Hells Canyon Dam | 3,172 | 2,569 | 1,940 |
| Pahsimeroi | Pahsimeroi | 1,129 | 982 | 707 |
| Sawtooth | Sawtooth | 7,116 | 6,295 | 4,973 |
| McCall | Knox B. | 6,809 | 6,145 | 3,994 |
| Total Salmon R. |  | 45,171 | 37,816 | 28,095 |
|  | TOTALS | 55,724 | 46,643 | 34,484 |

## Adult Return Estimates to Bonneville and Lower Granite Dams Based on PIT Detections

In-season estimates of adult returns to release sites are used to set harvest limits and adjust fishing seasons in real time. In-season estimates are generated using adult Chinook PIT tag detections in the Columbia and Snake rivers. The majority of the release groups of Chinook Salmon returning to Idaho in 2017 were representatively tagged as juveniles prior to release. Juvenile PIT tags in Chinook Salmon released from Idaho are randomly designated as monitor mode ( $70 \%$ of PIT tags in a release group) or default mode ( $30 \%$ of PIT tags in a release group) through a Separation by Code request to PTAGIS each year. See CSS (2017) for a thorough description of these modes. Adult Chinook Salmon PIT tag detections at Bonneville, McNary, Ice Harbor, and Lower Granite dams are expanded using equation 1. Default mode PIT tag detections are not expanded and each detection accounts for one fish. The Hells Canyon and Little Salmon River release groups were not PIT tagged, so we used Rapid River tags as a surrogate to generate return estimates. PIT tags generally underestimate the number of untagged fish returning due to tag shedding and differential mortality (Cassinelli et al. 2012). Estimates of adult Chinook Salmon at Bonneville Dam and LGD are provided Tables 7 and 8.

Equation 1. Adult PIT tag expansion calculation for monitor mode PIT tags detected at Columbia and Snake River Dams.

> PIT Expansion $=(\#$ of juvenile Chinook released $-\#$ of default mode PIT tags $) /$ $\#$ \#of monitor mode PIT tags

Table 7. Escapement of segregated adult spring/summer Chinook Salmon to Bonneville Dam in return year 2017.


Table 8. Estimated escapement of segregated adult spring/summer Chinook Salmon to Lower Granite Dam in return year 2017.

| Release <br> Hatchery | Release Site | One-Ocean | Two-Ocean | Three-Ocean | Total |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Clearwater | Selway River | 313 | 576 | 0 | 889 |
| Clearwater | Powell Pond | 361 | 829 | 82 | 1,272 |
| Clearwater | NF Clearwater | 793 | - | - | 793 |
| Clearwater | Red River | 425 | 1,470 | 0 | 1,895 |
| Clearwater | Clear Creek | 490 | 1,476 | 1 | 1,967 |
| Total Clearwater |  | $\mathbf{2 , 3 8 2}$ | $\mathbf{4 , 3 5 1}$ | $\mathbf{8 3}$ | 6,816 |
| R. | 1,028 | 4,391 | 275 | 5,694 |  |
| Rapid River | Rapid River Ponds | 205 | 527 | 44 | 776 |
| Rapid River | Hells Canyon Dam* | 82 | 176 | 21 | 279 |
| Rapid River | Little Salmon River* | 1,439 | 1,732 | 117 | 3,288 |
| Sawtooth | Sawtooth Weir | 187 | 235 | 14 | 437 |
| Sawtooth | Yankee Fork** | 833 | 125 | 0 | 958 |
| Pahsimeroi | Pahsimeroi Ponds | 1,095 | 763 | 46 | 1,904 |
| McCall | SF Salmon R. - Knox | $\mathbf{4 , 8 6 9}$ | $\mathbf{7 , 9 4 9}$ | $\mathbf{5 1 7}$ | $\mathbf{1 3 , 3 3 6}$ |
| Total Salmon R. |  | $\mathbf{7 , 2 5 1}$ | $\mathbf{1 2 , 3 0 0}$ | $\mathbf{6 0 0}$ | $\mathbf{2 0 , 1 5 2}$ |
| GRAND TOTAL |  |  |  |  |  |

* These releases did not have PIT tags; therefore, estimates for these releases were generated using SARs from the Rapid River Hatchery release as a surrogate.
** This release did not have PIT tags; therefore, estimates for this release were generated using SARs from the Sawtooth Hatchery release as a surrogate.


## Adult Return Estimates to Bonneville and Lower Granite Dams Using Parentage Based Tagging

Since return year 2012, IDFG has used Parentage Based Tagging to estimate the stockand age-specific returns of hatchery-origin Chinook Salmon to LGD. Estimates are derived using parentage analysis from tissue samples collected at the LGD fish trap, to partition out the LGD window count. The genetic and analytical methods used to decompose Chinook escapement over LGD can be found in Steele et al. (2018) and Camacho et al. (2019). In 2017, we used these decomposed escapement estimates for hatchery origin Chinook at LGD and PIT tag conversion rates to make PBT-based estimates of escapement over Bonneville Dam.

Comparisons of release group- and aggregate-level Parentage Based Tagging escapement estimates to PIT tag estimates at LGD in previous years suggest that PIT tags produced an estimate that was lower than actual return of Chinook to the Snake River basin (Belnap et al. 2019). We used the Parentage Based Tagging (PBT) data from the LGD fish trap with the PIT tag conversion rate estimates from Bonneville Dam to LGD to estimate chinook abundance at Bonneville Dam. We used post-season age-specific (i.e. jacks and adults calculated separately) PIT tag conversion rates between Bonneville Dam and LGD for each release group. The PBT estimate at LGD for each release group was divided by the age-specific PIT tag conversion rate for that release group to calculate the PBT estimate at Bonneville Dam. A minimum sample size of ten PIT tags was set for the conversion rate calculation because variance in small sample sizes can skew estimates. If ten PIT tags were not available within an age class for a given release group, surrogate PIT tags from all spring Chinook or all summer Chinook (depending on the run of the group of interest) for that age class were used to estimate the conversion rate from Bonneville to LGD.

The estimated return for the combined Clearwater River basin release groups was 102\% of the pre-season forecast at Bonneville Dam. For the combined Salmon River release groups, the estimated return was $58 \%$ of the pre-season forecast. Comparisons for individual release groups were variable but generally ranged from $60-100 \%$ of the preseason forecasts (Table 9).

Table 9. Comparison of forecasted and actual returns of adult Chinook Salmon to Bonneville Dam in 2017. Adults includes 2- and 3-ocean age fish.

| Release Hatchery | Release Site | Preseason Adult Forecast | Actual Return |
| :---: | :---: | :---: | :---: |
| Clearwater | Upper Selway | 812 | 1,284 |
| Clearwater | Powell Pond | 3,199 | 2,172 |
| Clearwater | Clear Creek | 1,486 | 2,830 |
| Clearwater | Red River | 3,330 | 3,064 |
| Total Clearw | vater R. | 8,827 | 9,350 |
| Rapid River | Rapid River Hatchery | 20,936 | 13,827 |
| Rapid River | Hells Canyon Dam | 2,569 | 1,659 |
| Rapid River | Little Salmon River | 889 | 553 |
| Sawtooth | Sawtooth Hatchery | 6,295 | 3,606 |
| Sawtooth | Yankee Fork | 638 | 11 |
| Pahsimeroi | Pahsimeroi Hatchery | 982 | 820 |
| McCall | SF Salmon River | 6,145 | 2,466 |
| Total Salmon R. |  | 38,454 | 22,942 |
| GRAND TOTAL |  | 47,281 | 32,292 |

## 2017 LGD Trap Operation

Chinook Salmon were trapped five days per week (Mon-Fri) at LGD at a rate of $26 \%$ from March 13 through April 16 and 28\% from April 17 through August 17. Tissue samples were collected at specific rates based on the presence or absence of an adipose fin. The goal for adclipped Chinook was to collect approximately 2,000 samples throughout the run. To achieve this, a subsample rate was set at $33.3 \%$ from March 7 to May 26 and adjusted to 50\% from May 29 to August 17. The goal for unclipped Chinook was to collect tissue samples from all fish collected in the adult trap. Samples collected from unclipped Chinook Salmon were part of an ongoing study to estimate the stock composition of the wild return (see Camacho et al. 2019). Because it is impossible to visually distinguish wild from unclipped hatchery Chinook, all the unclipped fish that were sampled were analyzed using PBT. As a result, the sample rate for the unclipped hatchery group was higher than for the clipped hatchery group (Table 10).

Throughout the 2017 adult return, tissue samples were collected from 3,754 ad-clipped adults and 838 unclipped-hatchery origin adults. For the ad-clipped group, 1,997 (5.2\% of the adclipped return) of the samples collected were used to estimate stock and age composition of the clipped hatchery return (Table 10). Of the 3,961 samples collected from unclipped Chinook, 827 assigned to the hatchery baseline ( $21.1 \%$ of the estimated unclipped hatchery-origin return) and were used to partition out the stock and age composition of the unclipped hatchery return (Table 10).

Table 10. Escapement of clipped and unclipped hatchery Chinook Salmon and summary of time stratification and sampling scheme for the 2017 adult migration at Lower Granite Dam.

| Strata | Date <br> Range | Chinook <br> Escapement | Samples <br> Collected | Samples <br> Included in <br> Analysis | Sample <br> Rate |
| :---: | :---: | ---: | ---: | ---: | ---: |
| 1 | $4 / 3-6 / 4$ | 15,197 | 1,288 | 1,287 | $8.47 \%$ |
| 2 | $6 / 5-6 / 11$ | 8,547 | 763 | 220 | $2.57 \%$ |
| 3 | $6 / 12-6 / 18$ | 7,226 | 903 | 193 | $2.67 \%$ |
| 4 | $6 / 19-6 / 25$ | 2,783 | 366 | 75 | $2.69 \%$ |
| 5 | $6 / 26-7 / 9$ | 2,996 | 241 | 90 | $3.00 \%$ |
| 6 | $7 / 10-7 / 23$ | 1,220 | 137 | 76 | $6.23 \%$ |
| 7 | $7 / 24-8 / 17$ | 469 | 56 | 56 | $11.94 \%$ |
| Ad-clipped | Total | 38,438 | 3,754 | 1,997 | $5.20 \%$ |
| 1 | $4 / 3-6 / 4$ | 726 | 141 | 141 | $19.42 \%$ |
| 2 | $6 / 5-6 / 11$ | 733 | 131 | 131 | $17.87 \%$ |
| 3 | $6 / 12-6 / 18$ | 889 | 222 | 222 | $24.97 \%$ |
| 4 | $6 / 19-6 / 25$ | 449 | 118 | 118 | $26.28 \%$ |
| 5 | $6 / 26-7 / 9$ | 617 | 99 | 99 | $16.05 \%$ |
| 6 | $7 / 10-7 / 23$ | 407 | 93 | 91 | $22.36 \%$ |
| 7 | $7 / 24-8 / 17$ | 140 | 34 | 33 | $23.57 \%$ |
| Unclipped | Total | 3,961 | 838 | 835 | $21.08 \%$ |

## Partitioning Window Counts to Stock and Age

Adult Chinook Salmon returns to LGD by release site and age were estimated post-season using the salmonid compositional bootstrap intervals (SCOBI) method (Steinhorst et al. 2017; Camacho et al. 2017).

Table 11. Age structure of hatchery origin Chinook Salmon sampled at Lower Granite Dam in 2017 by clipped or unclipped adipose fin mark.

| Mark | BY <br> $\mathbf{2 0 1 4}$ | BY <br> $\mathbf{2 0 1 3}$ | BY <br> $\mathbf{2 0 1 2}$ | Unassigned | Failed to <br> genotype | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AD clipped | 548 | 1,320 | 83 | 46 | 3 | 2,000 |
| Unclipped | 283 | 498 | 46 | 8 | 5 | 840 |

Of the 2,000 ad-clipped hatchery origin samples that were included in the analysis, 1,951 assigned to the PBT baseline, 46 did not assign to a hatchery stock, 3 failed to genotype, and 23 were duplicate samples. Duplicate samples were not removed from this analysis because fish that were sampled more than once were likely fish that had fallen back over the dam, re-ascended the adult ladder, and were counted more than once at the window. Because duplicate fish were counted at the window more than once, they should be accounted for in the stock composition in the same proportions that they fellback and reascended. Of the 840 unclipped hatchery origin samples that were collected at LGD, 827 assigned to the PBT baseline, 8 did not assign to a hatchery stock, and 5 failed to genotype. Brood year 2013 (age-4) was the predominant age class for both hatchery groups. Results from this analysis are presented in Table 11.

Table 12. Release group -specific brood year 2012, 2013, and 2014 returns of adult Chinook Salmon to Lower Granite Dam in 2017 based on PBT analysis (bootstrapped 90\% confidence intervals).

| Release Group | BY 2014 |  | BY 2013 |  | BY 2012 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ad-Clipped | Unclipped | Ad-Clipped | Unclipped | Ad-Clipped | Unclipped |
| NF Clearwater | 288 (146-446) | 0 | 1,739 (1,392-2,091) | 38 (19-61) | 286 (152-447) | 9 (1-21) |
| Selway (parr) | 0 | 0 | 0 | 0 | 24 (1-59) | 6 (1-17) |
| Dworshak Hatchery Total | 288 |  | 1,777 |  | 325 |  |
| Kooskia | 99 (35-184) | 6 (1-17) | 1,258 (983-1,560) | 46 (22-71) | 51 (1-128) | 0 |
| Kooskia Hatchery Total | 105 |  | 1,304 |  | 51 |  |
| Clear Creek | 803 (596-1,031) | 0 | 1,476 (1,183-1,786) | 9 (1-20) | 49 (1-123) | 17 (1-34) |
| Powell | 0 | 399 (328-474) | 1,067 (783-1,380) | 452 (377-531) | 0 | 32 (15-53) |
| Selway (smolt) | 225 (109-362) | 74 (43-108) | 635 (451-836) | 320 (255-388) | 12 (1-35) | 5 (1-15) |
| NF Clearwater | 656 (442-889) | 16 (1-32) | 0 | 0 | 0 | 0 |
| Red River | 869 (624-1,118) | 6 (1-17) | 1,888 (1,562-2,248) | 17 (4-33) | 105 (23-215) | 0 |
| Mill Creek | 539 (347-752) | 11 (1-24) | 0 | 0 | 0 | 0 |
| Clearwater Hatchery Total | 3,598 |  | 5,864 |  | 220 |  |
| Nez Perce Tribal Hatchery | 0 | 36 (16-58) | 83 (35-132) | 285 (225-349) | 0 | 9 (1-21) |
| Lolo Creek* <br> Newsome Creek* | 0 | 0 | 0 | 0 | 0 | 5 (1-15) |
| NPT Hatchery Total | 36 |  | 368 |  | 14 |  |
| Clearwater River Total | 4,027 |  | 9,313 |  | 610 |  |
| Rapid River/Hells Canyon | 2,962 (2,558-3,384) | 22 (5-43) | 11,650 (10,928-12,382) | 86 (54-122) | 502 (348-670) | 0 |
| Rapid River Hatchery Total | 2,984 |  | 11,736 |  | 502 |  |
| Sawtooth (Segregated)** | 1,643 (1,303-2,014) | 16 (4-33) | 2,465 (2,028-2,913) | 23 (8-43) | 169 (57-300) | 15 (4-32) |
| Sawtooth (Integrated) | 0 | 95 (59-133) | 0 | 131 (91-172) | 0 | 4 (1-11) |
| Yankee Fork | 49 (1-124) | 5 (1-15) | 8 (1-25) | 0 | 0 | 0 |
| Sawtooth Hatchery Total | 1,808 |  | 2,627 |  | 188 |  |
| Pahsimeroi (Segregated) | 497 (307-706) | 8 (1-19) | 353 (187-521) | 28 (10-48) | 25 (1-57) | 4 (1-13) |
| Pahsimeroi (Integrated) | 0 | 9 (1-20) | 0 | 84 (51-120) | 0 | 25 (9-43) |
| Pahsimeroi Hatchery Total | 514 |  | 465 |  | 54 |  |
| McCall (Segregated) | 1,533 (1,200-1,818) | 20 (5-38) | 1,381 (944-1,686) | 30 (13-51) | 256 (126-410) | 0 |
| McCall (Integrated) | 0 | 285 (227-344) | 0 | 538 (458-620) | 0 | 30 (12-50) |
| Johnson Creek | 0 | 230 (177-288) | 0 | 0 | 0 | 11 (1-24) |
| McCall Hatchery Total | 2,068 |  | 1,949 |  | 297 |  |
| Salmon River Total | 7,374 |  | 16,777 |  | 1,041 |  |
| Imnaha River | 117 (33-222) | 0 | 501 (304-711) | 7 (1-18) | 114 (37-227) | 0 |
| Lostine River | 226 (95-377) | 0 | 615 (382-871) | 5 (1-16) | 37 (1-113) | 0 |
| Catherine Creek | 78 (12-163) | 0 | 142 (60-230) | 4 (1-12) | 54 (1-135) | 0 |
| Grande Ronde R. | 0 | 31 (11-55) | 149 (71-241) | 139 (96-183) | 37 (1-113) | 19 (4-37) |
| Lookingglass Creek | 170 (72-277) | 0 | 279 (150-431) | 0 | 13 (1-35) | 0 |
| Oregon Total | 622 |  | 1,841 |  | 274 |  |
| Tucannon River | 0 | 124 (86-165) | 0 | 72 (42-105) | 0 | 5 (1-15) |
| NPTH Fall Chinook | 0 | 4 (1-13) | 17 (1-48) | 9 (1-20) | 0 | 9 (1-20) |
| Lyons Ferry Fall Chinook | 8 (1-25) | 13 (3-26) | 0 | 9 (1-20) | 0 | 4 (1-12) |
| Klickitat Hatchery | 12 (1-35) | 0 | 40 (1-117) | 0 | 0 | 0 |
| SF Walla Walla | 0 | 0 | 65 (12-141) | 0 | 0 | 0 |


| Release Group | BY 2014 |  | BY 2013 |  | BY 2012 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ad-Clipped | Unclipped | Ad-Clipped | Unclipped | Ad-Clipped | Unclipped |
| Wells Hatchery | 0 | 0 | 0 | 4 (1-12) | 0 | 0 |
| Total by Age | 12,184 |  | 28,147 |  | 1,943 |  |
| Unknown*** | 125 |  |  |  |  |  |
| Grand Total | 42,399 |  |  |  |  |  |

*PBT tracking to release site was not available for these releases.
**Estimates in the unclipped columns may include smolts released in the Yankee Fork Salmon River for BY2012.
***Unknown hatchery Chinook that did not assign to the parental baseline

## Comparison of PIT Tag and PBT Return Estimates to Lower Granite Dam

Since 2008, PIT-tagged hatchery Chinook Salmon are important as in-season management tool and for post-season estimates of returns to LGD. In-season, these estimates help to manage fisheries and broodstock acquisitions while post-season, they provide estimates of smolt-to-adult survival and return rates. However, limitations to PIT tag estimates are known and PIT tags can underrepresent untagged fish due to tag loss and differential survival of tagged and untagged fish (Cassinelli et al. 2012). Underrepresentation of stock- and age-specific untagged returns by PIT-tagged fish has been an ongoing issue, but the levels at which it occurs, by stock and age, had been previously unknown for many release groups. Starting in return year 2012, with the implementation of PBT and adult sampling at LGD, we now have an alternative method to estimate stock- and age-specific returns at LGD which provides the ability to evaluate PIT tag underrepresentation.

We compared the percent of the PBT estimates at LGD that were accounted for by PIT tags for each release group by age (Equation 2). For 2017 returns, PIT tag estimates accounted for $56 \%$ of the PBT-based estimates at LGD across all age groups and release sites combined (Table 13). The $44 \%$ underrepresentation across all groups equated to 17,737 hatchery Chinook Salmon that were unaccounted for with PIT tags.

Equation 2. Release site-specific PIT tag representation calculation using PIT tag estimates and PBT estimates.

$$
\% \text { PIT tag representation }=\frac{\text { Age specific end of season PIT Estimate }}{\text { Age specific end of season PBT Estimate }}
$$

We assume that the PBT estimates, which are ultimately based on the window count, are the correct estimate and unbiased in this estimate of unaccounted for Chinook Salmon. In reality, the estimate is likely biased high because current methodology used to estimate escapement over LGD using PBT does not account for fallback with reascension or night passage (i.e. fish that pass after counting hours end) that is detectable using PIT tags. When the window count is corrected for fallback with reascension and night passage rates, the corrected window count is lower than the reported window count. This translates to negatively biased PIT tag representation estimates. For all release sites combined, PIT tag estimates represented the PBT estimates at a higher rate for the BY2014 cohort (70\%) than for the BY2013 (52\%) and the BY2012 (41\%) cohorts (Table 13).

Table 13. Comparison of PBT- and PIT tag-based estimates of returns to LGD in 2017.

|  | PBT ESTIMATE |  |  | PIT ESTIMATE |  |  | PIT REPRESENTATION |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Release Group | BY2014 | BY2013 | BY2012 | BY2014 | BY2013 | BY2012 | BY2014 | BY2013 | BY2012 |
| Dworshak-NF Clearwater | 288 | 1,777 | 295 | 52 | 950 | 56 | 18\% | 53\% | 19\% |
| Kooskia-Clear Creek | 105 | 1,304 | 51 | 0 | 1 | 73 | 0\% | 0\% | 143\% |
| CFH-NF Clearwater | 672 | - | - | 793 | - | - | 118\% | - | - |
| CFH-Red River | 875 | 1,905 | 105 | 425 | 1,470 | 0 | 49\% | 77\% | 0\% |
| CFH-Selway | 299 | 955 | 17 | 313 | 576 | 0 | 105\% | 60\% | 0\% |
| CFH-Powell | 399 | 1,519 | 32 | 361 | 829 | 82 | 90\% | 55\% | 256\% |
| CFH-Clear Creek | 803 | 1,485 | 66 | 490 | 1,476 | 1 | 61\% | 99\% | 2\% |
| NPTH-Clearwater River | 36 | 368 | 9 | 7 | 118 | 15 | 19\% | 32\% | 167\% |
| CLEARWATER RIVER TOTAL | 3,477 | 9,313 | 575 | 2,441 | 5,420 | 227 | 70\% | 58\% | 39\% |
| Rapid R/Little Salmon R/Snake R | 2,984 | 11,736 | 502 | 1,315 | 5,049 | 340 | 44\% | 43\% | 68\% |
| Sawtooth-Upper Salmon R | 1,659 | 2,488 | 184 | 1,439 | 1,732 | 117 | 87\% | 70\% | 64\% |
| McCall SF Salmon R-Segregated | 1,553 | 1,411 | 256 | 1,095 | 763 | 46 | 71\% | 54\% | 18\% |
| McCall SF Salmon R-Integrated | 285 | 538 | 30 | 340 | 306 | 13 | 119\% | 57\% | 43\% |
| Pahsimeroi R | 505 | 381 | 29 | 833 | 125 | 0 | 165\% | 33\% | 0\% |
| SALMON RIVER TOTAL | 6,986 | 16,554 | 1,001 | 5,022 | 7,975 | 516 | 72\% | 48\% | 52\% |
| Lookingglass Creek | 170 | 279 | 13 | 61 | 178 | 0 | 36\% | 64\% | 0\% |
| Grand Ronde R | 31 | 288 | 56 | 0 | 113 | 0 | 0\% | 39\% | 0\% |
| Catherine Creek | 78 | 146 | 54 | 79 | 140 | 0 | 101\% | 96\% | 0\% |
| Lostine R | 226 | 620 | 37 | 107 | 218 | 0 | 47\% | 35\% | 0\% |
| Imnaha R | 117 | 508 | 114 | 74 | 318 | 17 | 63\% | 63\% | 15\% |
| NE OREGON TOTAL | 622 | 1,841 | 274 | 321 | 967 | 17 | 52\% | 53\% | 6\% |
| TOTAL BY AGE | 11,085 | 27,708 | 1,850 | 7,784 | 14,362 | 760 | 70\% | 52\% | 41\% |
| TOTAL |  | 40,643 |  |  | 22,906 |  |  | 56\% |  |

## Fallback / Reascension Rates and After-Hours Passage Rates at Lower Granite Dam

Fallback with Reascension and After-Hours passage rates are sources of bias in the window count at Lower Granite Dam. The rate at which these two actions occur are of interest because fallback with reascension results in fish being counted more than once in dam window counts and potentially tissue sampled for PBT multiple times at the LGD adult trap (overestimate), while fish passing the counting window after counting hours results in some fish not being counted (underestimate). We defined fallback with reascension as a Chinook Salmon that ascended the adult ladder more than once. These ascension events are observable using in the detailed interrogation history for individual PIT tagged adults. We defined After-Hour passage as fish that were detected in the adult ladder outside of the normal counting hours (0400-2000). Because the counting window is below all PIT tag detectors in the LGD adult ladder, fish detected in the adult ladder in the first 15 minutes after the counting period ended were excluded from the after-hours estimate, while fish detected within the first 15 minutes of the counting period starting were counted as having passed after hours.

We estimated the fallback with reascension rate and after-counting-hours passage rate by release site for adults and jacks returning to LGD in 2017 (Tables 14 and 15).

Table 14. Fallback and reascension rates for PIT-tagged jack and adult Chinook Salmon by release site, at Lower Granite Dam in return year 2017 with return year 2016 totals for comparison.

| Release Location | Adults (Two- and Three-Ocean) |  |  | Jacks (One-Ocean) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PIT <br> Detections at LGD | Reascension Events | Percent | PIT Detections at LGD | Reascension Events | Percent |
| Clear Creek | 23 | 6 | 26.09\% | 4 | 1 | 25.00\% |
| Knox Bridge | 54 | 1 | 1.85\% | 77 | 8 | 10.39\% |
| Pahsimeroi Ponds | 3 | 0 | 0.00\% | 14 | 1 | 7.14\% |
| Powell Pond | 43 | 5 | 11.63\% | 29 | 5 | 17.24\% |
| Rapid River | 94 | 23 | 24.47\% | 18 | 1 | 5.56\% |
| Red River | 21 | 3 | 14.29\% | 5 | 0 | 0.00\% |
| Sawtooth Hatchery | 21 | 0 | 0.00\% | 16 | 0 | 0.00\% |
| Selway River | 28 | 6 | 21.43\% | 11 | 1 | 9.09\% |
| Yankee Fork | 0 | 0 | 0.00\% | 1 | 0 | 0.00\% |
| 2017 TOTAL | 287 | 44 | 15.33\% | 175 | 17 | 9.71\% |
| 2016 TOTAL | 609 | 19 | 3.10\% | 234 | 6 | 2.60\% |

Table 15. Percent of after counting hours passage, by release site, at Lower Granite Dam in return year 2017 for jacks and adults with return year 2016 totals for comparison.

|  | Adults (Two- and Three-Ocean) |  |  | Jacks (One-Ocean) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Release Location |  | AfterHours Passage | Percent | PIT <br> Detections at LGD | AfterHours Passage | Percent |
| Clear Creek | 23 | 1 | 4.35\% | 4 | 0 | 0.00\% |
| Knox Bridge | 54 | 1 | 1.85\% | 77 | 5 | 6.49\% |
| Pahsimeroi Ponds | 3 | 0 | 0.00\% | 14 | 0 | 0.00\% |
| Powell Pond | 43 | 5 | 11.63\% | 29 | 1 | 3.45\% |
| Rapid River | 94 | 3 | 3.19\% | 18 | 3 | 16.67\% |
| Red River | 21 | 2 | 9.52\% | 5 | 0 | 0.00\% |
| Sawtooth Hatchery | 21 | 0 | 0.00\% | 16 | 0 | 0.00\% |
| Selway River | 28 | 0 | 0.00\% | 11 | 0 | 0.00\% |
| Yankee Fork | 0 | 0 | 0.00\% | 1 | 1 | 100.00\% |
| 2017 TOTAL | 287 | 12 | 4.18\% | 175 | 10 | 5.71\% |
| 2016 TOTAL | 609 | 39 | 6.40\% | 105 | 5 | 4.80\% |

In 2017, the fallback/reascension rate was higher for both adults and jacks than it was in 2016. More importantly, the fallback with reascension rate was substantially higher than the after-counting-hours passage rate for adults and jacks suggesting that the window count likely overestimated Chinook escapement above LGD in 2017. Fallback with reascension rates were higher for earlier arriving groups than for later arriving groups.

The net difference between fallback/reascension rates and after-hours passage resulted in the hatchery origin adult count at the LGD window being overestimated by 3,027 fish and the hatchery origin jack count being overestimated by 470 fish in 2017. Unfortunately, PIT tags are not a useful tool to directly assess the frequency of fallback that does not result in reascension as few tags that fallback are detected at PIT arrays below LGD. Previous work done by Boggs et al. (2004) evaluated how fallback with reascension and fallback without reascension biased window counts for Chinook Salmon $>50 \mathrm{~cm}$ using radio tags at four dams on the Columbia River and the four Lower Snake River dams between 1996 and 2001. The adjusted window count at LGD was lower than the reported window count in four of the five years evaluated. The estimated fallback with reascension rate in 2017 at LGD (15.33\%) was higher than the range of rates ( $0.6 \%-5.8 \%$ ) reported in this study which suggests that the reported window counts at LGD will continue to overestimate Chinook Salmon escapement if no correction for fallback with reascension is derived. The study also suggested that, on average, $71.7 \%$ of the spring-summer Chinook Salmon that fell back reascended the LGD adult ladder and remained upstream. If this average is applicable to recent passage conditions, the positive bias in the window count would be higher than the estimates we report here.

## Hatchery Weir Returns

IDFG operated hatchery weirs trapped over 12,000 Chinook Salmon (Table 16). We estimated the age composition of adults returning to individual hatchery facilities using an agelength key derived from known age adults from CWTs, PIT tags and PBT samples collected from broodstock. After we developed an age-length key for each hatchery weir, we used the statistical computer program $R$ ( R Development Core Team 2010) and the mixdist library package (Macdonald 2010) to estimate the age composition for Chinook Salmon captured at each hatchery weir. The Rmix package was designed to estimate the parameters of a mixture distribution with
overlapping components, such as the overlapping length distributions associated with adult salmon returns composed of multiple age classes, and applies the maximum likelihood estimation method to a population based on a known age subsample.

Table 16. Adult spring/summer Chinook Salmon captured at IDFG hatchery weirs, by weir, sex, age, and origin for return year 2017.

| Weir | Origin** | Males |  | Females | Total Return |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Jacks | Adults | Adults |  |
| SF Salmon R. | H-seg | 383 | 1,405 | 659 | 2,447 |
| SF Salmon R. | H-int | 300 | 179 | 212 | 691 |
| SF Salmon R. | N | 29 | 29 | 40 | 98 |
| Sawtooth | H-seg | 929 | 484 | 432 | 1,845 |
| Sawtooth | H -int | 62 | 36 | 60 | 158 |
| Sawtooth | N | 29 | 22 | 16 | 67 |
| Pahsimeroi | H-seg | 516 | 180 | 277 | 973 |
| Pahsimeroi | H-int | 15 | 43 | 61 | 119 |
| Pahsimeroi | N | 10 | 51 | 41 | 102 |
| Jacks Adults |  |  |  |  |  |
| Red R/Crooked R* | H | 410 | 920 |  | 1,330 |
| Red R/Crooked R* | N | 10 | 18 |  | 28 |
| Powell* | H | 268 | 704 |  | 972 |
| Powell* | N | 0 | 22 |  | 22 |
| Rapid River* | H | 925 | 2,878 |  | 3,803 |
| Rapid River* | N | 9 | 22 |  | 31 |
|  |  | Grand | tal |  | 12,686 |

* These facilities do not make a sex determination at trapping, so Adult numbers include males and females.
** H-Seg=- Segregated hatchery, H-Int= Integrated hatchery, N=Natural


## Sport Fisheries in Idaho

In 2017, sport fisheries for Chinook Salmon were conducted on sections of the Clearwater, Salmon, and Snake rivers on hatchery Chinook Salmon returning to Clearwater Hatchery, Dworshak Hatchery , Kooskia Hatchery, Nez Perce Tribal Hatchery, Rapid River hatchery, McCall Fish Hatchery, Pahsimeroi Hatchery, and Sawtooth Hatchery. Tables 17 and 18 list the location, duration, and extent of these fisheries.

Bank fishing made up a greater proportion of the angler effort than boat fishing for spring and summer Chinook Salmon fisheries; however, boat fishing was higher than bank effort in the fall Chinook Salmon fisheries (Table 19).

The highest catch rate for Chinook caught occurred in the Upper Salmon River (8 hours/fish), while the highest catch rate for Chinook kept occurred in the Lower Salmon Fishery (10 hours/fish). The overall catch rate was higher in the spring and summer Chinook fishery (12 hours/fish caught) than the catch rate in the fall Chinook fishery ( 22 hours/fish caught). The hours/fish kept was relatively high during the fall Chinook fisheries compared to the spring and summer Chinook fisheries and is likely related to the high proportion of unclipped fish in the return.

Anglers were only allowed to keep adipose-clipped Chinook during the fall Chinook fishery (Table 19).

Returns of spring and summer Chinook Salmon in 2017 to Idaho contributed to a combined sport harvest of 2,565 adults and 1,384 jacks. The age and release group specific harvest rates and the overall age specific harvest rates reported in Table 20 were calculated using equation 3 and equation 4. The overall adult harvest rate was $9.9 \%$ and the jack harvest rate was 13.7\% (Table 20).

Equation 3. Estimate of age and release group specific harvest rates for sport fisheries in Idaho.

Age and Release Group Specific Harvest Rate $=\frac{\text { Age and Release Group Specific Harvest Estimate }}{\text { Age and Release Group Specific PBT Estimate }}$

Equation 4. Estimate of overall age specific harvest rate for sport fisheries in Idaho.

$$
\text { Age Specific Harvest Rate }=\frac{\text { Age Specific Harvest Estimate }}{\text { Age Specific PBT Estimate }}
$$

| Table 17. | Dates and locations of spring/summer Chinook Salmon sport fisheries conducted in Idaho in 2017. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| River | $\begin{aligned} & \text { Date } \\ & \text { Open } \end{aligned}$ | Date | $\begin{aligned} & \text { Days } \\ & \text { Open } \end{aligned}$ | Downstream Boundary | Upstream Boundary | Miles Open |
| Clearwater R. | 4/22 | 6/11 | 51 | Railroad Bridge in Lewiston | Cherrylane Bridge | 20 |
|  | 4/22 | 6/11 | 51 | Cherrylane Bridge | Orofino Bridge | 23 |
|  | 4/22 | 6/11 | 51 | Orofino Bridge | Confluence with SF Clearwater R. | 24 |
| NF Clearwater R. | 4/22 | 5/24 | 33 | Mouth | Dworshak Dam | 2 |
| SF Clearwater R. | 4/22 | 6/11 | 51 | Mouth | Confluence American and Red rivers | 62 |
| MF Clearwater R. | 4/22 | 6/11 | 51 | SF Clearwater River | Confluence Lochsa and Selway rivers | 23 |
| Lochsa R. | 4/22 | 7/14 | 84 | Mouth | Confluence Colt Killed and Crooked Fork Cr. | 69 |
| Snake R. | 4/22 | 7/31 | 101 | Dug Bar | Hells Canyon Dam | 51 |
|  | 4/22 | 5/24 | 33 | Rice Creek Bridge | Time Zone Bridge | 46 |
| Lower Salmon R. | 4/22 | $7 / 2$ | 72 | Time Zone Bridge | Short's Creek | 3 |
|  | 4/22 | 5/24 | 33 | Short's Creek | Vinegar Creek | 23 |
| Little Salmon R. | 4/22 | 7/31 | 101 | Mouth | U.S. 95 Bridge near Smokey Boulder Road | 25 |
| Upper Salmon R. | 6/22 | 7/31 | 40 | Mouth of Valley Creek | 100 yds downstream of Sawtooth Hatchery weir | 5 |

Table 18. Dates and locations of fall Chinook Salmon sport fisheries conducted in Idaho in 2017.

| River | Date <br> Open | Date <br> Closed | Days <br> Open | Downstream Boundary | Upstream Boundary |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Open |  |  |  |  |  |

* Fishery between Cliff Mountain Rapids and Hells Canyon Dam remained open until November 17

Table 19. Angler effort and catch data from all spring, summer, and fall Chinook Salmon sport fisheries conducted in Idaho in 2017.

| Target Run | Fishery | Angler Hours |  |  | Total Salmon Caught | TotalSalmonReleased | Hours/Fish |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Boat | Bank | Total |  |  | Caught | Kept |
| Spring/Summer Chinook | Clearwater River* | 3,089 | 4,699 | 7,788 | 577 | 178 | 13 | 20 |
|  | Lower Salmon River | 2,867 | 5,654 | 8,521 | 917 | 97 | 9 | 10 |
|  | Snake River | 132 | 6,768 | 6,900 | 447 | 18 | 15 | 16 |
|  | Little Salmon River | 0 | 22,015 | 22,015 | 1,697 | 130 | 13 | 14 |
|  | South Fork Salmon River** | - | - | - | - | - | - | - |
|  | Upper Salmon River | 34 | 8,322 | 8,356 | 1,001 | 267 | 8 | 11 |
|  | All Fisheries | 6,122 | 47,458 | 53,580 | 4,639 | 690 | 12 | 14 |
| Fall Chinook | Snake River | 31,009 | 4,246 | 35,255 | 1,703 | 1,116 | 21 | 60 |
|  | Clearwater River | 4,324 | 1,395 | 5,719 | 202 | 115 | 28 | 66 |
|  | All Fisheries | 35,333 | 5,641 | 40,974 | 1,905 | 1,231 | 22 | 61 |

*Includes mainstem, North Fork, Middle Fork, South Fork, Selway, and Lochsa rivers.
**No fishery in 2017.

Table 20. Spring/summer Chinook Salmon sport harvest management metrics and harvest rates for adults and jacks, by release site for 2017.

|  |  | Adults |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hatchery | Release Site | Final LGD PIT Estimate | Brood Need | Sport Harvest Share | ID Sport Harvest | LGD PBT Estimate**** | Sport Harvest Rate |
| Dworshak | N.F. Clearwater R. | 1,346 | 2,050 |  | 8 | 2,049 | 0.4\% |
| Kooskia | Clear Creek | 596 | 594 |  | 6 | 1,309 | 0.5\% |
| Clearwater | N.F. Clearwater R. | 0 | 280 |  | 0 | 0 | 0.0\% |
| Clearwater | Selway River* | 429 | 290 |  | 5 | 647 | 0.8\% |
| Clearwater | Powell Pond** | 829 | 434 |  | 238 | 1,551 | 15.3\% |
| Clearwater | Clear Creek | 755 | 518 |  | 5 | 1,525 | 0.3\% |
| Clearwater | Red River | 1,137 | 924 |  | 10 | 1,993 | 0.5\% |
| NPTH | Clearwater R. | 109 | 162 |  | 3 | 83 | 3.6\% |
| Total Clearwater R. Adults |  | 5,201 | 5,252 | 0 | 275 | 9,157 | 3.0\% |
| Rapid. | Rapid River Ponds | 6,810 | 2,400 | 2,205 | 1,904 | 12,152 | 15.7\% |
| Sawtooth | Sawtooth/ Yankee F. | 1,849 | 996 | 427 | 378 | 2,642 | 14.3\% |
| Pahsimeroi | Pahsimeroi Ponds | 125 | 670 | 0 | 0 | 378 | 0.0\% |
| McCall | SF Salmon R. | 809 | 850 | 0 | 8 | 1,637 | 0.5\% |
| Total Salmon R. Adults |  | 9,593 | 4,916 | 2,632 | 2,290 | 16,809 | 13.6\% |
| GRAND TOTAL ADULTS |  | 14,794 | 10,168 | 2,632 | 2,565 | 25,966 | 9.9\% |
| Jacks |  |  |  |  |  |  |  |
| Hatchery | Release Site | Final <br> LGD <br> Estimate | Brood <br> Need*** | Non- <br> Tribal Harvest Share** | ID Sport Harvest | LGD PBT Estimate**** | Sport Harvest Rate |
| Dworshak | N.F. Clearwater R. | 52 | NA |  | 12 | 288 | 4.2\% |
| Kooskia | Clear Creek | 0 | NA |  | 10 | 99 | 10.1\% |
| Clearwater | N.F. Clearwater R. | 793 | NA |  | 0 | 656 | - |
| Clearwater | Selway River* | 313 | NA |  | 8 | 225 | 3.6\% |
| Clearwater | Powell Pond** | 361 | NA |  | 50 | 399 | 12.5\% |
| Clearwater | Clear Creek | 490 | NA |  | 27 | 803 | 3.4\% |
| Clearwater | Red River | 425 | NA |  | 17 | 869 | 2.0\% |
| NPTH | Clearwater R. | 7 | NA |  | 0 | 0 | - |
| Total Clearwater R. Jacks |  | 2,441 | 0 | N/A | 124 | 3,339 | 3.7\% |
| Jacks |  |  |  |  |  |  |  |
| Release Hatchery | Release Site | Final LGD PIT Estimate | Brood Need*** | Non- Tribal Harvest Share** | ID <br> Sport <br> Harvest | LGD PBT <br> Estimate**** | Sport Harvest Rate |
| Rapid R. | Rapid River Ponds | 1,315 | 100 |  | 767 | 2,962 | 25.9\% |
| Sawtooth | Sawtooth/ Yankee F. | 1,440 | NA |  | 446 | 1,692 | 26.4\% |
| Pahsimeroi | Pahsimeroi Ponds | 833 | NA |  | 20 | 497 | 4.0\% |
| McCall | SF Salmon R. | 1095 | NA |  | 24 | 1533 | 1.6\% |
| Klickitat | Klickitat | 1,095 | NA |  | 3 | 52 | 5.8\% |
| Total Salmon R. Jacks |  | 5,778 | 100 | N/A | 1,260 | 6,736 | 18.7\% |
| GRAND TOTAL JACKS |  | 8,219 | 100 | N/A | 1,384 | 10,075 | 13.7\% |

* The adult estimate from PIT tags is adjusted to only include adipose clipped returns
** This is a summer run. Estimates include unclipped returns
*** Brood needs and non-tribal harvest shares are not identified for Chinook Salmon jacks
**** PBT estimates only include ad-clipped returns except for Powell Summers which includes both clipped and unclipped estimates


## Fishery Catch Composition of Sport Harvested Chinook Salmon

Harvest in fisheries in the Little Salmon River and the Upper Salmon River was assumed to be from the release groups released in those areas and the age determination was based on length-frequency analysis of harvested fish checked during creel surveys. For mixed-release group fisheries (e.g., Clearwater, Snake, and lower Salmon Rivers), release group and age composition was determined using creel and PBT data obtained from tissue samples of fish sampled during creel surveys. There were 146 tissue samples collected and analyzed from the Clearwater River fishery, 186 samples from the Snake River fishery, 598 samples from the lower Salmon River fishery, and 282 samples from the upper Salmon River fishery. The PBT samples from each river section were expanded by release group-specific tagging rates, and the proportion of each release group and age in the PBT-based release group composition was applied to the total estimated harvest for each fishery to generate a final release group and age composition. Table 21 summarizes the estimated age and release group composition of the 2017 Chinook Salmon harvest.

Table 21. Composition of 2017 spring/summer Chinook Salmon sport harvest in Idaho by fishery, release group, and age.

| Fishery and Release Group | Age-3 | Age-4 | Age-5 | Total |
| :---: | :---: | :---: | :---: | :---: |
| Clearwater River Fishery |  |  |  |  |
| Dworshak | 12 | 3 | 5 | 20 |
| Kooskia | 10 | 6 | 0 | 16 |
| Clearwater (Powell) | 50 | 238 | 0 | 288 |
| Clearwater (Selway) | 8 | 5 | 0 | 13 |
| Clearwater (Clear Creek) | 27 | 5 | 0 | 32 |
| Clearwater (South Fork) | 17 | 8 | 2 | 27 |
| Nez Perce Tribal Hatchery | 0 | 3 | 0 | 3 |
| Total | 124 | 268 | 7 | 399 |
| Snake River Fishery |  |  |  |  |
| Rapid River (Hells Canyon | 86 | 326 | 8 | 420 |
| Dam) | 86 | 326 | 8 | 420 |
| Sawtooth-Upper Salmon | 3 | 3 | 0 | 6 |
| Klickitat Hatchery | 0 | 3 | 0 | 3 |
| Total | 89 | 332 | 8 | 429 |
| Lower Salmon River Fishery |  |  |  |  |
| Rapid River Hatchery | 227 | 455 | 2 | 684 |
| McCall Hatchery | 24 | 8 | 0 | 32 |
| Pahsimeroi Hatchery | 20 | 0 | 0 | 20 |
| Sawtooth - Upper Salmon | 64 | 20 | 0 | 84 |
| Total | 335 | 483 | 2 | 820 |
| Little Salmon River Fishery* |  |  |  |  |
| Rapid River Hatchery | 454 | 1,100 | 13 | 1,567 |
| Total | 454 | 1,100 | 13 | 1,567 |
| SF Salmon River Fishery** |  |  |  |  |
| McCall (SFSR) | - | - | - | - |
| Total | - | - | - | - |
| Upper Salmon River Fishery |  |  |  |  |
| Sawtooth - Upper Salmon | 379 | 335 | 20 | 734 |
| Total | 379 | 335 | 20 | 734 |
| Grand Total | 1,381 | 2,518 | 50 | 3,949 |

* These are terminal fisheries so all harvest was assumed to be from the local release group.
** No fishery in 2017.

Fisheries targeting fall Chinook Salmon returns were conducted on the Clearwater, Salmon, and Snake rivers during 2017 and resulted in the harvest of 360 fall Chinook Salmon (Table 22).

Table 22. Summary of 2017 fall Chinook Salmon sport harvest in Idaho by fishery and age.

| Fishery | BY2015 | BY2014 | BY2013 | Total |
| :---: | :---: | :---: | :---: | :---: |
| Clearwater River Fishery | 73 | 14 | 0 | $\mathbf{8 7}$ |
| Snake River Fishery | 90 | 163 | 20 | $\mathbf{2 7 3}$ |
| Total | $\mathbf{1 6 3}$ | $\mathbf{1 7 7}$ | $\mathbf{2 0}$ | $\mathbf{3 6 0}$ |

## ACKNOWLEDGEMENTS

We thank the many folks who contributed to the material in this report. Thanks to the hatchery managers and their staff for all their efforts to collect data and adapt to ever-changing requests. Thanks to the PSMFC marking crew for their efforts in marking and tagging fish. Thanks to the staff at the Eagle Fish Genetics Laboratory for coordinating the PBT project and providing it as a monitoring and evaluation tool. Thanks to IDFG regional staff who supplied harvest information, including Don Whitney, Kim Apperson, Laurie Janssen, Paul Janssen, and Jon Hansen. Thanks to Brian Leth, Rod Engle, and Chuck Warren for providing draft edits and feedback on the content of this report. Thanks to Cheryl Leben for providing formatting and editing. Additional funding for PIT tagging and PBT projects was provided by the Bonneville Power Association and data resulting from those projects contributed to some of the analyses included in this report.

## LITERATURE CITED

Belnap, M., S. Rosenberger, and F. Bohlen. 2019. IPC and LSRCP monitoring and evaluation programs in the state of Idaho: Calendar Year 2016 and Brood Year 2010 Hatchery Chinook Salmon Reports. Idaho Department of Fish and Game. Report number 19-04. Boise.

Boggs, C. T., M. L. Keefer, C. A. Peery, T. C. Bjornn, and L. C. Stuehrenberg. 2004. Fallback, reascension, and adjusted fishway escapement estimates for adult Chinook Salmon and steelhead at Columbia and Snake River dams. Transactions of the American Fisheries Society 133:932-949.

Camacho, C. A., K. K. Wright, J. Powell, W. C. Schrader, T. Copeland, M. W. Ackerman, M. Dobos, M. P. Corsi, and M. R. Campbell. 2017. Wild adult steelhead and Chinook salmon abundance and composition at Lower Granite Dam, spawn years 2009-2016. Cumulative Report 2009 through 2016. Idaho Department of Fish and Game Report 17-06.

Camacho, C. A., T. Delomas, M. Davison, M. E. Dobos, W. C. Schrader, T. Copeland, and M. R. Campbell. 2019. Wild Adult Steelhead and Chinook Salmon Abundance and Composition at Lower Granite Dam, Spawn Year 2018. Page 77. Idaho Department of Fish and Game, Annual Progress Report 19-09, Boise.

Cassinelli, J., S. Rosenberger, and F. Bohlen. 2012. 2011 calendar year hatchery Chinook Salmon report: IPC and LSRCP monitoring and evaluation programs in the state of Idaho. Idaho Department of Fish and Game. Boise.

Comparative Survival Study Oversight Committee and Fish Passage Center. 2018. Comparative survival study (CSS) of PIT-tagged spring/summer Chinook and summer steelhead 2018 annual report. https://www.fpc.org/documents/CSS/2018-CSS-Report-Fix.pdf

Idaho Department of Fish and Game. 2019. Fisheries Management Plan 2019-2024. Idaho Department of Fish and Game, Boise.

LSRCP (Lower Snake River Compensation Plan). 1991. Snake River hatchery review workshop. Compiled by Lower Snake River Compensation Plan Office. U.S. Fish and Wildlife Service. Boise, Idaho.

Macdonald, P. 2010. Mixdist: finite mixture distribution models (version 0.5-3). McMaster University. Ontario, Canada. Available at http://cran.us.r-project.org/.

NOAA Fisheries. "A Vision for Salmon and Steelhead: Goals to Restore Thriving Salmon and Steelhead to the Columbia River Basin \| NOAA Fisheries." NOAA, 11 July 2019, https://www.fisheries.noaa.gov/vision-salmon-and-steelhead-goals-restore-thriving-salmon-and-steelhead-columbia-river-basin.

R Development Core Team. 2010. R: A language and environment for statistical computing. R. Foundation for Statistical Computing. Vienna, Austria. Available at http://www.Rproject.org.

Steele, C., J. McCane, J. Powell, N. Vu, M. Campbell. Parentage-based tagging of Snake River hatchery Steelhead and Chinook Salmon. 2018. Idaho Department of Fish and Game Report 18-04. Boise.

Steinhorst, K., T. Copeland, M. W. Ackerman, W. C. Schrader, and E. C. Anderson. 2017. Estimates and Confidence Intervals for Run Composition of Returning Salmonids. Fishery Bulletin 115:1-12.

Sullivan, C., S. Rosenberger, and F. Bohlen. 2018. IPC and LSRCP Monitoring and Evaluation Programs in the State of Idaho: Calendar Year 2015 and Brood Year 2009 Hatchery Chinook Salmon Reports. Idaho Department of Fish and Game, Report 18-02, Boise.

United States Army Engineer District. 1975. Special report Lower Snake River Fish and Wildlife Compensation Plan. Department of the Army, Walla Walla District, Corps of Engineers. Walla Walla, Washington.

Venditti, D. A., C. A. Steele, and J. H. Powell. 2018. Integrated Broodstock Evaluation 2010-2017 Annual Report. Idaho Department of Fish and Game, Report 18-19. Boise.

Westhagen, P., and J. R. Skalski. 2009. PitPro (version 4.0). School of Aquatic and Fishery Sciences. University of Washington. Seattle. Available at http://www.cbr. washington.edu/paramest/pitpro/.

Young, W., S. Rosenberger, D. Milks, B. Sandford, and J. Powell. 2017. Final Abundance and Composition of Snake River Fall Chinook Salmon Returning to Lower Granite Dam in 2017. Nez Perce Tribe, Department of Fisheries Management, Lapwai, Idaho.

## CHAPTER 2

# IDAHO POWER COMPANY AND LOWER SNAKE RIVER COMPENSATION PLAN CHINOOK SALMON FISH HATCHERY EVALUATIONS—IDAHO 

Brood Year 2011
Hatchery Chinook Salmon Report
Project Progress Report

By
Matthew J. Belnap

Idaho Department of Fish and Game 600 South Walnut Street
P.O. Box 25

Boise, ID 83707

Funded by:
Idaho Power Company
1221 W. Idaho St.
Boise, ID 83702
U.S. Fish and Wildlife Service

Lower Snake River Compensation Plan Office
1387 S. Vinnell Way, Suite 343
Boise, ID 83709

Cooperative Agreement \#F16AC00027

IDFG Report Number 20-14
August 2020


#### Abstract

This annual report provides a summary of brood year 2011 (BY11) Chinook Salmon Oncorhynchus tshawytscha released from Lower Snake River Compensation Plan (LSRCP) and Idaho Power Company (IPC) hatcheries operated by the Idaho Department of Fish and Game (IDFG).

Idaho-LSRCP (McCall [MFH], Clearwater [CFH], Sawtooth [SFH]), IPC (Rapid River [RRFH], and Pahsimeroi [PFH]) fish hatcheries collected 12,777,465 green eggs in 2011 and released $8,925,777$ smolts in 2013. All facilities met their production targets for green eggs taken except Sawtooth. Facilities faced minor fish health issues, the most prevalent being bacterial kidney disease (BKD) which resulted in the culling of low numbers of eggs from production. None of the fish health issues affecting BY11 Chinook resulted in significant losses to production.

Representative groups of juveniles from each facility were PIT tagged to estimate survival from release to Lower Granite Dam (LGD). Estimated juvenile survival rates during the 2013 migration ranged from 54.5\% at Powell Pond to $82.7 \%$ at Clear Creek. The weighted average juvenile survival across all groups was 65.6\%.

BY11 adult Chinook returned as adults from 2014 through 2016. Adult returns are summarized by age and release site for each hatchery and include estimates of harvest (ocean, downriver, and terminal), below-weir dropouts, and escapement. Hatchery-origin Chinook Salmon released from LSRCP and IPC hatcheries in Idaho were harvested in tribal and non-tribal fisheries in the Columbia and Snake rivers downstream of LGD and in mainstem and tributary fisheries upstream of LGD. The number of each hatchery's brood-specific adult return that was harvested below LGD ranged from 737 fish for PFH to 7,174 for RRFH, with a total of 18,254 fish for all BY11 Chinook. The number of each hatchery's return to LGD that was harvested above LGD ranged from 436 fish for PFH to 20,840 for RRFH, with a total of 30,752 for all BY11 Chinook.

Smolt-to-adult survival (SAS) rates from adult Chinook returns ranged from $0.50 \%$ for PFH to $2.07 \%$ for MFH. Smolt-to-adult returns (SAR) above LGD ranged from $0.27 \%$ for PFH to $1.44 \%$ for RRFH. SAR's and SAS's were higher than the recent five-year averages at all facilities. Progeny-to-parent ratios (PPR) to the project area ranged from 6.5 at PFH to 21.8 at RRFH.


## INTRODUCTION

The primary purpose of this report is to summarize activities at each of the LSRCP- and IPC-funded spring/summer Chinook Salmon hatcheries operated by IDFG and to estimate at what level each facility contributed to various adult return components. These include fisheries in the Pacific Ocean and Columbia River as well as the adult return upstream of LGD, the contributions to fisheries within Idaho, and the numbers of fish back to the respective hatchery trapping facilities. Additionally, life stage specific post-release survival is reported to address overall survival from release to return. In each annual report, a given brood year is summarized by consolidating the spawning, juvenile rearing and release information, and the adult returns from that particular brood year. Because of the five-year generation length of Chinook Salmon and the additional two years required to obtain all downriver harvest information, there is a seven-year lag associated with summarizing the productivity of a brood year. Hence, BY11 is finalized in the current 2017 report so that reporting is caught up to the most recent brood year that can be summarized.

## Spawning and Eye-Up

Spawning was conducted across all spring/summer Chinook Salmon facilities in August and September 2011. Prespawn mortality was higher than the recent five-year average at Pahsimeroi and Rapid river, and lower than the recent five-year average at Sawtooth, McCall, and Clearwater. Prespawn mortality was higher for females than males at all facilities.

Average fecundity ranged from 3,695 eggs per female at Powell to 5,045 eggs per female at McCall Fish Hatchery (Table 23). Variation in fecundity between facilities in 2011 can be largely explained by the run type (spring vs. summer) of the fish at the facility. Fecundity was lower at facilities with spring Chinook Salmon programs (SF Clearwater, Powell, and Rapid River) while facilities with summer Chinook Salmon programs (McCall, and Pahsimeroi) had higher fecundities. The unweighted average fecundity of 4,324 across all facilities was lower than the recent five-year average of 4,455 eggs per female (Appendix A).

The green egg takes at all facilities except Sawtooth met or exceeded the level needed to fill the hatcheries to production targets in 2011 (Table 23). Eggs were transferred from Pahsimeroi to Sawtooth for rearing to defray some of the shortage at that facility, and the resulting juveniles were released at Pahsimeroi. Culling occurred at all facilities. The number of fish culled in 2011 was below the recent five-year average at McCall, Clearwater, Sawtooth, and Rapid River and equal to the five-year average at Pahsimeroi.

Table 23. Brood year 2011 spring/summer Chinook Salmon hatchery survival and production metrics for LSRCP and IPC hatcheries operated by IDFG (averages in parentheses).

| \% Male |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Collection <br> Facility / Stock | Female <br> Prespawn <br> Mortality | Prespawn <br> Mortality | Males <br> Spawned | Females <br> Spawned <br> $*$ | Fecundity | Inventory <br> $* *$ | Total Green <br> Eggs |
| McCall | $4.7 \%$ | $17.8 \%$ | 325 | 394 | 5,045 | 81 | 11 |
| Sawtooth | $0.0 \%$ | $2.9 \%$ | 120 | 203 | 4,949 | 0 | $1,987,584$ |
| Collected**** |  |  |  |  |  |  |  |

* Total females spawned includes those females whose eggs were later culled.
** Females culled because of excess egg inventory.
*** Females culled because of disease concerns.
**** Total Green Eggs Collected may include eggs that were later culled and often includes eggs that were later transferred to another facility or organization. For numbers of eggs collected for hatchery-specific smolt releases, see Table 4.


## Green-Egg-to-Release Survival

The number of green eggs collected, percent eye-up, number of eyed eggs, smolts released, and green-egg-to-release survival rates at each facility for BY11 are summarized in Table 24. The average percent eye-up was $91.1 \%$, and the average green-egg-to-smolt survival rate was 73.8 \% across all facilities.

Table 24. Egg collection and survival metrics for brood year 2011 Chinook Salmon collected at LSRCP and IPC hatcheries operated by IDFG.

| Collection Facilityl Stock | \# Green Eggs Collected for Smolt Production | Eye Up Rate | \# Eyed Eggs | Yearling Smolts Released | $\begin{gathered} \text { Green Egg } \\ \text { to Smolt } \\ \text { Survival } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| McCall | 1,327,018 | 93.6\% | 1,221,763 | 1,074,850 | 81.0\% |
| Sawtooth* | 1,670,879 | 90.2\% | 1,507,803 | 1,226,253 | 73.4\% |
| Clearwater** | 3,341,099 | 93.5\% | 3,123,928 | 2,507,133 | 75.0\% |
| Rapid River | 4,405,312 | 92.2\% | 4,062,901 | 3,111,668 | 70.6\% |
| Pahsimeroi | 1,348,776 | 81.7\% | 1,101,900 | 1,005,873 | 74.6\% |
| Total or (Weighted Mean) | 12,093,084 | (91.1\%) | 11,018,295 | 8,925,777 | (73.8\%) |

* Includes eggs that were transferred from Pahsimeroi Hatchery, reared to smolts at Sawtooth Hatchery, then released as smolts from Pahsimeroi Hatchery
** Green egg estimate includes egg transfers from Kooskia $(64,531)$, and McCall $(334,137)$ hatcheries.


## Fish Health

Fish health monitoring occurred during spawning and rearing. Kidneys from adult female Chinook Salmon were visually inspected for signs of bacterial kidney disease (BKD) by fish pathologists during spawning and a kidney sample was taken to the Eagle Fish Health Laboratory for analysis using the enzyme-linked immunosorbent assay (ELISA) method (Dixon 1987). Females culled because of disease occurred on the "table" (i.e. at the time of spawning) if pathologists observed granulomas in a female's kidney or after spawning based on exceedance
of a suggested optical density of 0.25 based on ELISA values (Munson et al. 2010). Occasionally, when adult returns are not sufficient to meet broodstock goals, managers may decide to adjust the ELISA value threshold.

Routine sampling of juveniles occurred six months prior to release and four to six weeks prior to release. Additional sampling occurred if symptoms or increased mortality was observed earlier in the rearing cycle. Fish are also screened for Aeromonas spp., Renibacterium Salmoninarum (causative agent of BKD), Myxobolus spp. (causative agent of whirling disease), and Ichthyophthirius multifiliis (causative agent of "Ich"). Adult Chinook Salmon held for broodstock in 2011 were treated with formalin during holding at all facilities.

## McCall Hatchery

Routine inspections detected $R$. Salmoninarum, resulting in the culling of eggs from 92 females and includes eggs that were later transferred to Clearwater Fish Hatchery. No pathogens were detected during the juvenile rearing cycle, and no major losses occurred as a result of fish health concerns.

## Sawtooth Hatchery

Adults held for broodstock in 2011 were injected with erythromycin as a prophylactic treatment for bacterial kidney disease. After spawning, ELISA testing of kidney samples detected $R$. Salmoninarum at optical densities above 0.25 in eggs from eight females. These eggs were culled. Eggs from brood year 2011 were treated for Ichthyophthirius multifiliis or "Ich" five times. During the juvenile rearing cycle, a 28-day prophylactic regimen of erythromycin medicated feed was initiated to reduce the risk of BKD, but the fish stopped eating feed after the third week of the treatment. There were no major losses because of disease or fish health concerns during the rearing cycle for brood year 2011.

## Clearwater Hatchery

Routine inspections detected $R$. Salmoninarum, resulting in the culling of eggs from 76 females. In the fall of 2012, fish health staff detected BKD in $40 \%$ (2 of 5) of samples of Red River juveniles, and during pre-release sampling in February of 2013, 38\% (23 of 60) of samples of Red River juveniles sampled were positive for BKD. Pseudomonas spp. was also detected during the juvenile rearing cycle of the Red River group. In the Powell stock, BKD was detected in 12\% (7 of 60) of samples analyzed. No major losses occurred because of fish health concerns during the rearing cycle for brood year 2011.

## Rapid River Hatchery

Routine inspections detected $R$. Salmoninarum, resulting in the culling of eggs from 29 females. No pathogens were detected by Fish Health staff during the juvenile rearing cycle, and no major losses occurred because of fish health concerns.

## Pahsimeroi Hatchery

Routine inspections detected $R$. Salmoninarum resulting in the culling of eggs from 18 females. Daily mortality (later attributed to BKD) increased in the two months prior to release, and a 21-day medicated feed treatment started in March of 2013. During pre-release sampling in March of 2013, BKD was detected in 60\% (36 of 60) samples. The Pahsimeroi release was
delayed from April 1 to April 5 to accommodate a 21-day pre-release withdrawal period from the BKD medicated feed treatment. No major losses occurred on the rearing hatchery because of fish health concerns during the brood year 2011 rearing cycle.

## Juvenile Releases

During the spring of 2013, 8,925,777 BY11 spring and summer Chinook Salmon smolts were released from three LSRCP and two IPC fish hatcheries located in Idaho. All facilities exceeded their release goals except for Sawtooth Fish Hatchery, which did not meet their release goal ( $68.1 \%$ of goal). Release numbers contributing towards the Sawtooth release goal include eggs from fish that were spawned at Pahsimeroi, transferred to Sawtooth for rearing, then released at Pahsimeroi ( 439,389 smolts; Table 25). Direct and volitional release strategies were employed depending on facility design and the presence of acclimation ponds. The majority of the Chinook from BY11 were adipose fin clipped to provide harvest opportunities in mark selective fisheries; however, some fish were released without adipose clips for supplementation and broodstock management purposes. Passive integrated transponder (PIT) tags were present in a portion of most release groups and provided juvenile survival estimates to LGD and adult escapement estimates. The weighted average size at release for BY11 smolts (18.0 fish per pound; FPP) was similar to the recent five-year average of 18.2 FPP (Appendix D).

Table 25. Release details of brood year 2011 Chinook Salmon from LSRCP and IPC facilities operated by IDFG.

| Juv. Migr. Year | HatcheryProgram | Rel. Site | Release <br> Date(s) | Release Type | AD Only | AD/CWT | CWT Only | No Tag | PIT TAG* | Total Release | Size at Release (fpp) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 | McCall (Seg) | SFSR-Knox B. | 3/25-3/28 | Direct | 700,964 | 120,037 | 0 | 0 | 27,952 | 821,001 | 17.1 |
| 2013 | McCall (Int) | SFSR-Knox B. | 3/26-3/28 | Direct | 0 | 0 | 253,849 | 0 | 25,952 | 253,849 | 16.6 |
| McCall Total Release |  |  |  |  | 700,964 | 120,037 | 253,849 | 0 | 53,904 | 1,074,850 |  |
| McCall Release Target |  |  |  |  |  |  |  |  |  | 1,000,000 |  |
| 2013 | Rapid River | Rapid R. Pond | 3/12-4/26 | Volitional | 2,377,396 | 120,272 | 0 | 0 | 51,899 | 2,497,668 | 15.8 |
| 2013 | Rapid River | Little Salmon R. | 3/14 | Direct | 200,000 | 0 | 0 | 0 | 0 | 200,000 | 18.5 |
| 2013 | Rapid River | Hells Can. Dam | 3/11-3/14 | Direct | 414,000 | 0 | 0 | 0 | 0 | 414,000 | 18.5 |
| Rapid River Total Release |  |  |  |  | 2,991,396 | 120,272 | 0 | 0 | 51,899 | 3,111,668 |  |
| Rapid River Release Target |  |  |  |  |  |  |  |  |  | 3,000,000 |  |
| 2013 | Clearwater | Clear Creek | 3/19 | Direct | 260,020 | 118,063 | 0 | 0 | 17,083 | 378,083 | 20.1 |
| 2013 | Clearwater | Powell Pond | 3/20-3/21 | Direct | 290,264 | 118,157 | 0 | 0 | 17,059 | 408,421 | 22.5 |
| 2013 | Clearwater | Red River Pond | 3/27-4/3 | Direct | 967,140 | 118,346 | 0 | 0 | 16,850 | 1,085,486 | 19.5 |
| 2013 | Clearwater | Selway R. | 3/18-3/19 | Direct | 176,754 | 116,909 | 132,250 | 783 | 17,063 | 426,696 | 20.0 |
| 2013 | Clearwater | Crooked R. | 3/20 | Direct | 0 | 0 | 207,023 | 1,424 | 25,451 | 208,447 | 20.0 |
| Clearwater Total Release |  |  |  |  | 1,694,178 | 471,475 | 339,273 | 2,207 | 93,506 | 2,507,133 |  |
| Clearwater Release Target |  |  |  |  |  |  |  |  |  | 2,335,000 |  |
| 2013 | Saw (Seg) | Sawtooth Weir | 4/5 | Direct | 652,732 | 0 | 0 | 0 | 21,282 | 652,732 | 23.0 |
| 2013 | Saw (Int) | Sawtooth Weir | 4/6 | Direct | 0 | 0 | 133,685 | 447 | 996 | 134,132 | 24.9 |
| Sawtooth Total Release Sawtooth Release Target |  |  |  |  | 652,732 | 0 | 133,685 | 447 | 22,278 | 786,864 |  |
|  |  |  |  |  |  |  |  |  |  | 1,800,000 |  |
| 2013 | Pah (Seg) | Pahsimeroi R. | 4/5-4/17 | Volitional | 721,519 | 117,145 | 0 | 0 | 21,374 | 838,664 | 13.8 |
| 2013** | Pah (Seg) | Pahsimeroi R. | 4/2-4/3 | Direct | 8,364 | 431,025 | 0 | 0 | 0 | 439,389 | 25.6 |
| 2013 | Pah (Int) | Pahsimeroi R. | 4/5-4/17 | Volitional | 0 | 0 | 167,209 | 0 | 998 | 167,209 | 14.0 |
| Pahsimeroi Total Release |  |  |  |  | 729,883 | 548,170 | 167,209 | 0 | 22,372 | 1,445,262 |  |
| Pahsimeroi Release Target |  |  |  |  |  |  |  |  |  | 1,000,000 |  |
| GRAND TOTAL RELEASE |  |  |  |  | 6,769,153 | 1,259,954 | 894,016 | 2,654 | 243,959 | 8,925,777 |  |

* Numbers shown in PIT TAG column are not additional fish and are accounted for within the other mark group
totals.
** This group was raised at Sawtooth Hatchery from Pahsimeroi Hatchery egg transfers because Sawtooth had open rearing space.


## Juvenile Migration Timing and Survival

Representative groups of Chinook from all hatcheries were PIT tagged to evaluate migration timing and survival to LGD. These metrics are summarized for all PIT-tagged smolts from BY11 released in 2013 (Table 26). Similar to previous years, the majority of PIT-tagged Chinook smolts arrived at LGD between mid-April to mid-May.

In migration year 2013, juvenile survival estimates to LGD ranged from 54.5\% from the Powell Pond release site to $82.7 \%$ from the Clear Creek release site. Migration year 2013 juvenile survival rates were higher than the five-year average at Clearwater, McCall, Pahsimeroi, and Sawtooth, and they were lower than the five-year average at Rapid River (Appendix D).

Table 26. Survival, migration, and arrival timing of brood year 2011 Chinook Salmon smolts at Lower Granite Dam (LGD) from releases at LSRCP and IPC fish hatcheries located in Idaho.

| Rearing Hatchery | Release Site | Distance to LGD (km) | Number <br> PIT <br> Tagged | Number of Unique Detections at LGD | Estimated Survival Rate to LGD ( $95 \%$ CI) | Detection Probability | 50\% Arrival Date | 80\% Arrival Window (\# of Days) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clearwater | Powell Pond | 321 | 17,059 | 1,552 | $\begin{gathered} 54.5 \\ (51.1-57.9) \end{gathered}$ | 16.7\% | 4/30 | $\begin{aligned} & 4 / 12-5 / 14 \\ & \text { (32) } \end{aligned}$ |
|  | Selway (smolt) | 240 | 17,063 | 1,575 | $\begin{gathered} 59.1 \\ (55.8-62.4) \end{gathered}$ | 15.6\% | 4/18 | $\begin{gathered} 4 / 4-5 / 5 \\ (31) \end{gathered}$ |
|  | Red River Pond | 299 | 16,850 | 1,812 | $\begin{gathered} 59.2 \\ (55.5-62.9) \end{gathered}$ | 18.2\% | 5/7 | $\begin{gathered} 4 / 26-5 / 15 \\ (19) \end{gathered}$ |
|  | Clear Creek | 176 | 17,083 | 1,818 | $\begin{gathered} 82.7 \\ (77.9-87.5) \end{gathered}$ | 12.9\% | 4/29 | $\begin{gathered} 4 / 9-5 / 5 \\ (26) \end{gathered}$ |
|  | Crooked River | 280 | 25,451 | 2,589 | $\begin{gathered} 55.3 \\ (52.8-57.8) \end{gathered}$ | 18.4\% | 5/2 | $\begin{aligned} & 4 / 15-5 / 15 \\ & (30) \end{aligned}$ |
| McCall | Knox B (Seg) | 457 | 25,950 | 3,319 | $\begin{gathered} 63.3 \\ (60.3-66.3) \end{gathered}$ | 20.2\% | 5/9 | $5 / 6-5 / 14$ <br> (8) |
|  | KnoxB (Int) |  | 25,952 | 3,156 | $\begin{gathered} 70.0 \\ (50.8-65.8) \end{gathered}$ | 17.4\% | 5/9 | 5/4-5/13 <br> (9) |
| Sawtooth | Sawtooth (Seg) | 747 | 21,282 | 3,326 | $\begin{gathered} 57.1 \\ (54.8-59.4) \end{gathered}$ | 27.4\% | 5/10 | $\begin{gathered} 5 / 6-5 / 14 \\ (8) \end{gathered}$ |
|  | Sawtooth (Int) |  | 996 | 166 | $\begin{gathered} 58.3 \\ (50.8-65.8) \end{gathered}$ | 28.6\% | 5/10 | 5/4-5/13 <br> (9) |
| Pahsimeroi | Pahsimeroi (Seg) | 630 | 21,393 | 1,888 | $\begin{gathered} 61.0 \\ (57.7-64.3) \end{gathered}$ | 14.5\% | 4/28 | $\begin{gathered} 4 / 17-5 / 6 \\ (19) \end{gathered}$ |
|  | Pahsimeroi (Int) |  | 998 | 94 | $\begin{gathered} 74.0 \\ (55.3-92.7) \end{gathered}$ | 12.7\% | 4/29 | $\begin{gathered} 4 / 16-5 / 6 \\ (20) \end{gathered}$ |
| Rapid River | Rapid River | 283 | 51,899 | 8,627 | $\begin{gathered} 73.6 \\ (71.5-75.7) \\ \hline \end{gathered}$ | 22.8\% | 5/9 | $\begin{gathered} 5 / 3-5 / 13 \\ (10) \\ \hline \end{gathered}$ |

## Adult Returns and Harvest Information

Adult returns from brood year 2011 are listed by recovery year, area, and age of return in Table 27. Beginning in brood year 2011, adult escapement estimates above LGD are based on PBT estimates. New in this report are PBT-based escapement estimates to Bonneville Dam. These estimates were calculated by dividing the age and release site-specific PBT escapement estimates to LGD by age and release site-specific PIT tag conversion rates from Bonneville to LGD. These estimates, the harvest below Bonneville, and the harvest in the ocean are used to calculate the total estimates reported in Table 27 (Sullivan et al. 2018).

Table 27. Harvest and escapement of hatchery-origin Chinook Salmon from brood year 2011.

|  |  | Below LGD |  |  |  |  |  |  |  |  |  | Above LGD |  |  |  | TRIBUTARY ESCP. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hatchery <br> Release <br> Site and productio <br> n type |  | $\begin{aligned} & \text { §్ } \\ & 00 \\ & 0 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & E \\ & \frac{E}{0} \\ & \mathbf{E} \\ & \vdots \\ & 3 \end{aligned}$ | - |
|  | 2016 | 0 | 65 | 0 | 1,227 | 0 | 175 | 0 | 240 | 0 | 818 | 0 | 246 | 91 | 337 | 7 | 28 | 236 | 1,292 |
| MFH | 2015 | 58 | 682 | 694 | 9,497 | 7 | 3,389 | 0 | 4,830 | 0 | 4,378 | 0 | 1,146 | 321 | 1,467 | 23 | 212 | 2,297 | 10,931 |
| Knox B. | 2014 | 0 | 403 | 24 | 4,227 | 0 | 107 | 0 | 534 | 0 | 2,456 | 0 | 235 | 254 | 489 | 0 | 9 | 1,557 | 4,654 |
| Seg | Total | 58 | 1,150 | 718 | 14,951 | 7 | 3,671 | 0 | 5,604 | 0 | 7,652 | 0 | 1,627 | 666 | 2,293 | 30 | 249 | 4,090 | 16,877 |
|  | 2016 | 0 | 0 | 11 | 205 | 0 | 46 | 0 | 57 | 0 | 145 | 0 | 0 | 23 | 23 | 0 | 4 | 181 | 216 |
| MFH | 2015 | 35 | 0 | 43 | 3,341 | 0 | 1,022 | 0 | 1,100 | 4 | 1,844 | 0 | 0 | 91 | 91 | 1 | 33 | 957 | 3,419 |
| Knox B. | 2014 | 1 | 0 | 2 | 1,692 | 0 | 82 | 0 | 85 | 2 | 1,465 | 0 | 0 | 164 | 164 | 0 | 1 | 830 | 1,695 |
| Int | Total | 36 | 0 | 56 | 5,238 | 0 | 1,150 | 0 | 1,242 | 6 | 3,454 | 0 | 0 | 278 | 278 | 1 | 38 | 1,968 | 5,330 |
|  | 2016 | 0 | 65 | 11 | 1,432 | 0 | 221 | 0 | 297 | 0 | 963 | 0 | 246 | 114 | 360 | 7 | 32 | 417 | 1,508 |
| McCall | 2015 | 93 | 682 | 737 | 12,838 | 7 | 4,411 | 0 | 5,930 | 4 | 6,222 | 0 | 1,146 | 412 | 1,558 | 24 | 245 | 3,254 | 14,350 |
| Hatchery | 2014 | 1 | 403 | 26 | 5,919 | 0 | 189 | 0 | 619 | 2 | 3,921 | 0 | 235 | 418 | 653 | 0 | 10 | 2,387 | 6,349 |
| Total | Total | 94 | 1,150 | 774 | 20,189 | 7 | 4,821 | 0 | 6,846 | 6 | 11,106 | 0 | 1,627 | 944 | 2,571 | 31 | 287 | 6,058 | 22,207 |
|  | 2016 | X | X | X | 658 | X | X | 0 | 0 | 0 | 570 | 0 | 60 | 0 | 60 | X | 45 | 170 | 658 |
| SFH | 2015 | X | X | $x$ | 4,397 | X | X | 0 | 0 | 0 | 3,072 | 0 | 596 | 449 | 1,045 | X | 101 | 831 | 4,397 |
| Sawtooth | 2014 | X | X | X | 565 | X | X | 0 | 0 | 0 | 452 | 0 | 113 | 0 | 113 | X | 19 | 441 | 565 |
| Seg | Total | 0 | 0 | 0 | 5,620 | 0 | 0 | 0 | 0 | 0 | 4,094 | 0 | 769 | 449 | 1,218 | 0 | 165 | 1,442 | 5,620 |
| SFH | 2016 | 0 | 19 | 10 | 86 | 0 | 15 | 0 | 44 | 3 | 72 | 0 | 14 | 0 | 14 | 0 | 0 | 86 | 115 |
| PAH | 2015 | 11 | 104 | 128 | 552 | 1 | 485 | 4 | 733 | 3 | 293 | 0 | 86 | 0 | 86 | 4 | 0 | 376 | 795 |
| Ponds** | 2014 | 0 | 12 | 0 | 115 | 0 | 0 | 0 | 12 | 0 | 100 | 0 | 9 | 0 | 9 | 0 | 0 | 62 | 127 |
| Seg | Total | 11 | 135 | 138 | 753 | 1 | 500 | 4 | 789 | 6 | 465 | 0 | 109 | 0 | 109 | 4 | 0 | 524 | 1,037 |
|  | 2016 | 0 | 0 | 0 | 129 | 0 | 9 | 0 | 9 | 0 | 112 | 0 | 0 | 0 | 0 | 0 | 17 | 51 | 129 |
| SFH | 2015 | 7 | 0 | 0 | 707 | 0 | 255 | 0 | 262 | 0 | 440 | 0 | 0 | 0 | 0 | 0 | 76 | 161 | 714 |
| Sawtooth | 2014 | 0 | 0 | 0 | 544 | 0 | 10 | 0 | 10 | 0 | 435 | 0 | 122 | 10 | 132 | 0 | 11 | 245 | 544 |
| Int | Total | 7 | 0 | 0 | 1,380 | 0 | 274 | 0 | 281 | 0 | 987 | 0 | 122 | 10 | 132 | 0 | 104 | 457 | 1,387 |
|  | 2016 | 0 | 19 | 10 | 873 | 0 | 24 | 0 | 53 | 3 | 754 | 0 | 74 | 0 | 74 | 0 | 62 | 307 | 902 |
| Sawtooth | 2015 | 18 | 104 | 128 | 5,656 | 1 | 740 | 4 | 995 | 3 | 3,805 | 0 | 682 | 449 | 1,131 | 4 | 177 | 1,368 | 5,906 |
| Hatchery | 2014 | 0 | 12 | 0 | 1,224 | 0 | 10 | 0 | 22 | 0 | 987 | 0 | 244 | 10 | 254 | 0 | 30 | 748 | 1,236 |
| Total | Total | 18 | 135 | 138 | 7,753 | 1 | 774 | 4 | 1,070 | 6 | 5,546 | 0 | 1,000 | 459 | 1,459 | 4 | 269 | 2,423 | 8,044 |
| CFH - | 2016 | 0 | 27 | 7 | 151 | 0 | 0 | 0 | 34 | 0 | 99 | 0 | 18 | 0 | 18 | 3 | 0 | 385 | 185 |
| Powell | 2015 | 0 | 220 | 65 | 4,421 | 0 | 57 | 0 | 342 | 0 | 3921 | 0 | 484 | 442 | 926 | 20 | 0 | 576 | 4,706 |
| Pond | 2014 | 0 | 21 | 0 | 164 | 0 | 0 | 8 | 29 | 0 | 150 | 0 | 127 | 0 | 127 | 28 | 0 | 138 | 185 |
| Total | Total | 0 | 268 | 72 | 4,736 | 0 | 57 | 8 | 405 | 0 | 4,170 | 0 | 629 | 442 | 1,071 | 51 | 0 | 1,099 | 5,076 |
| CFH - | 2016 | 0 | 68 | 28 | 305 | 0 | 0 | 0 | 96 | 0 | 203 | 0 | 108 | 37 | 145 | 0 | 0 | 112 | 401 |
| Red R. | 2015 | 0 | 385 | 209 | 5,363 | 0 | 251 | 0 | 845 | 30 | 4392 | 36 | 1,312 | 1174 | 2522 | 192 | 36 | 1,339 | 5,957 |
| Pond | 2014 | 0 | 55 | 40 | 698 | 0 | 54 | 0 | 149 | 0 | 611 | 0 | 183 | 27 | 210 | 38 | 0 | 136 | 793 |


|  |  | Below LGD |  |  |  |  |  |  |  |  |  | Above LGD |  |  |  | TRIBUTARY ESCP. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hatchery <br> Release <br> Site and <br> productio <br> n type |  | $\begin{aligned} & \text { ฐ్ } \\ & \text { む́ } \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \frac{E}{5} \\ & \frac{1}{5} \\ & \vdots \\ & 3 \end{aligned}$ | ¢ |
| Red River | Total | 0 | 508 | 277 | 6,366 | 0 | 305 | 0 | 1,090 | 30 | 5,206 | 36 | 1,603 | 1,238 | 2,877 | 230 | 36 | 1,587 | 7,151 |
| CFH - | 2016 | 0 | 0 | 5 | 37 | 0 | 0 | 0 | 5 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 42 |
| Crooked | 2015 | 0 | 0 | 342 | 1,193 | 0 | 0 | 0 | 342 | 1 | 520 | 0 | 0 | 0 | 0 | 5 | 15 | 85 | 1,535 |
| River | 2014 | 0 | 0 | 4 | 336 | 0 | 4 | 0 | 8 | 2 | 70 | 0 | 0 | 0 | 0 | 1 | 4 | 51 | 340 |
| Crooked R | Total | 0 | 0 | 351 | 1,566 | 0 | 4 | 0 | 355 | 3 | 627 | 0 | 0 | 0 | 0 | 6 | 23 | 136 | 1,917 |
| CFH - | 2016 | 0 | 56 | 0 | 79 | 0 | 0 | 0 | 56 | 0 | 56 | 0 | 0 | 1 | 1 | 3 | 0 | 3 | 135 |
| Selway | 2015 | 0 | 62 | 0 | 3,509 | 3 | 61 | 10 | 136 | 3 | 2,839 | 0 | 194 | 408 | 602 | 97 | 0 | 589 | 3,571 |
| River*** | 2014 | 0 | 15 | 0 | 551 | 0 | 14 | 0 | 29 | 0 | 463 | 0 | 123 | 0 | 123 | 6 | 0 | 144 | 566 |
| Selway | Total | 0 | 133 | 0 | 4,139 | 3 | 75 | 10 | 221 | 3 | 3,358 | 0 | 317 | 409 | 726 | 106 | 0 | 736 | 4,272 |
| CFH - | 2016 | 0 | 0 | 6 | 101 | 0 | 0 | 0 | 6 | 0 | 82 | 0 | 12 | 1 | 13 | 0 | 0 | 22 | 107 |
| Clear | 2015 | 0 | 83 | 207 | 2,821 | 4 | 0 | 17 | 311 | 7 | 2,279 | 9 | 505 | 177 | 691 | 0 | 0 | 101 | 3,111 |
| Creek | 2014 | 0 | 13 | 26 | 253 | 0 | 0 | 0 | 39 | 0 | 218 | 0 | 68 | 0 | 68 | 32 | 0 | 72 | 292 |
| Clear Cr. | Total | 0 | 96 | 239 | 3,175 | 4 | 0 | 17 | 356 | 7 | 2,579 | 9 | 585 | 178 | 772 | 32 | 0 | 195 | 3,510 |
|  | 2016 | 0 | 151 | 46 | 673 | 0 | 0 | 0 | 197 | 0 | 477 | 0 | 138 | 39 | 177 | 6 | 4 | 522 | 870 |
|  | 2015 | 0 | 750 | 823 | 17,307 | 7 | 369 | 27 | 1,976 | 41 | 13,951 | 45 | 2,495 | 2,201 | 4,741 | 314 | 51 | 2,690 | 18,880 |
| CFH | 2014 | 0 | 104 | 70 | 2,002 | 0 | 72 | 8 | 254 | 2 | 1,512 | 0 | 501 | 27 | 528 | 105 | 4 | 541 | 2,176 |
| Total | Total | 0 | 1,005 | 939 | 19,982 | 7 | 441 | 35 | 2,427 | 43 | 15,940 | 45 | 3,134 | 2,267 | 5,446 | 425 | 59 | 3,753 | 21,926 |
|  | 2016 | 0 | 324 | 124 | 2,485 | 0 | 0 | 0 | 448 | 0 | 1,849 | 0 | 237 | 264 | 501 | 0 | 0 | 235 | 2,933 |
| RRFH - | 2015 | 81 | 2,614 | 1,158 | 35,694 | 21 | 531 | 323 | 4,728 | 0 | 29,840 | 0 | 9,328 | 7,160 | 16,488 | 0 | 0 | 3,194 | 39,547 |
| RRFH | 2014 | 0 | 373 | 137 | 4,641 | 0 | 0 | 72 | 582 | 0 | 4,154 | 0 | 813 | 190 | 1,003 | 0 | 0 | 901 | 5,151 |
| Seg | Total | 81 | 3,311 | 1,419 | 42,820 | 21 | 531 | 395 | 5,758 | 0 | 35,843 | 0 | 10,378 | 7,614 | 17,992 | 0 | 0 | 4,330 | 47,631 |
|  | 2016 | 0 | 26 | 10 | 199 | 0 | 0 | 0 | 36 | 0 | 148 | 0 | 19 | 21 | 40 | 0 | 0 | 19 | 235 |
| RRFH - | 2015 | 6 | 209 | 93 | 2,858 | 2 | 43 | 26 | 379 | 0 | 2,389 | 0 | 746 | 573 | 1,319 | 0 | 0 | 256 | 3,167 |
| L. Sal. R. | 2014 | 0 | 30 | 11 | 372 | 0 | 0 | 6 | 47 | 0 | 333 | 0 | 868 | 2 | 870 | 0 | 0 | 72 | 413 |
| Seg | Total | 6 | 265 | 114 | 3,429 | 2 | 43 | 32 | 461 | 0 | 2,870 | 0 | 1,633 | 596 | 2,229 | 0 | 0 | 347 | 3,814 |
| RRFH- | 2016 | 0 | 54 | 21 | 412 | 0 | 0 | 0 | 74 | 0 | 307 | 0 | 3 | 0 | 3 | 0 | 0 | 10 | 486 |
| HC | 2015 | 13 | 433 | 192 | 5,916 | 3 | 88 | 54 | 784 | 0 | 4,946 | 0 | 471 | 0 | 471 | 0 | 0 | 1,845 | 6,555 |
| Dam**** | 2014 | 0 | 62 | 23 | 769 | 0 | 0 | 12 | 97 | 0 | 689 | 0 | 145 | 0 | 145 | 0 | 0 | 165 | 854 |
| Seg | Total | 13 | 549 | 235 | 7,097 | 3 | 88 | 66 | 955 | 0 | 5,942 | 0 | 619 | 0 | 619 | 0 | 0 | 2,020 | 7,895 |
| Rapid | 2016 | 0 | 404 | 154 | 3,096 | 0 | 0 | 0 | 558 | 0 | 2,304 | 0 | 259 | 285 | 544 | 0 | 0 | 264 | 3,654 |
| River | 2015 | 101 | 3,257 | 1,443 | 44,468 | 26 | 662 | 402 | 5,890 | 0 | 37,175 | 0 | 10,545 | 7,733 | 18,278 | 0 | 0 | 5,295 | 49,268 |
| Hatchery | 2014 | 0 | 465 | 171 | 5,782 | 0 | 0 | 90 | 726 | 0 | 5,176 | 0 | 1,826 | 192 | 2,018 | 0 | 0 | 1,138 | 6,418 |
| Total | Total | 101 | 4,125 | 1,768 | 53,346 | 26 | 662 | 492 | 7,174 | 0 | 44,655 | 0 | 12,630 | 8,210 | 20,840 | 0 | 0 | 6,697 | 59,340 |
| PFH - | 2016 | 0 | 0 | 0 | 450 | 0 | 76 | 0 | 76 | 0 | 375 | 0 | 40 | 0 | 40 | 0 | 0 | 257 | 450 |
| PAH | 2015 | 0 | 167 | 89 | 3,207 | 0 | 262 | 0 | 518 | 0 | 1,703 | 0 | 346 | 0 | 346 | 0 | 0 | 1,015 | 3,463 |
| Ponds | 2014 | 0 | 0 | 0 | 450 | 0 | 0 | 0 | 0 | 0 | 191 | 0 | 50 | 0 | 50 | 0 | 0 | 289 | 450 |
| Seg | Total | 0 | 167 | 89 | 4,107 | 0 | 338 | 0 | 594 | 0 | 2,269 | 0 | 436 | 0 | 436 | 0 | 0 | 1,561 | 4,363 |
| PFH - | 2016 | 2 | 0 | 0 | 30 | 0 | 16 | 0 | 18 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 32 |


|  |  | Below LGD |  |  |  |  |  |  |  |  |  | Above LGD |  |  |  | TRIBUTARY ESCP. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hatchery <br> Release <br> Site and productio n type |  | $\begin{aligned} & \text { ฐ్ } \\ & \text { © } \\ & 0 \end{aligned}$ |  |  | PBT at BONN |  |  |  |  |  |  |  | ID Sport Harvest |  |  |  | $\begin{aligned} & \text { İ } \\ & 3 \\ & 3 \\ & \frac{0}{0} \\ & 0 \end{aligned}$ | $\begin{aligned} & \frac{5}{0} \\ & \frac{1}{2} \\ & 3 \\ & 3 \end{aligned}$ | - |
| PAH | 2015 | 0 | 5 | 3 | 181 | 0 | 95 | 0 | 103 | 1 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 190 | 189 |
| Ponds | 2014 | 0 | 0 | 7 | 402 | 0 | 15 | 0 | 22 | 1 | 348 | 0 | 0 | 0 | 0 | 0 | 0 | 322 | 409 |
| Int | Total | 2 | 5 | 10 | 613 | 0 | 126 | 0 | 143 | 2 | 468 | 0 | 0 | 0 | 0 | 0 | 0 | 516 | 630 |
|  | 2016 | 2 | 0 | 0 | 480 | 0 | 92 | 0 | 94 | 0 | 395 | 0 | 40 | 0 | 40 | 0 | 0 | 261 | 482 |
| PAH | 2015 | 0 | 172 | 92 | 3,388 | 0 | 357 | 0 | 621 | 1 | 1,803 | 0 | 346 | 0 | 346 | 0 | 0 | 1,205 | 3,652 |
| Hatchery | 2014 | 0 | 0 | 7 | 852 | 0 | 15 | 0 | 22 | 1 | 539 | 0 | 50 | 0 | 50 | 0 | 0 | 611 | 859 |
| Total | Total | 2 | 172 | 99 | 4,720 | 0 | 464 | 0 | 737 | 2 | 2,737 | 0 | 436 | 0 | 436 | 0 | 0 | 2,077 | 4,993 |
| GRAND TOTAL |  | 215 | 6,587 | 3,718 | 105,990 | 41 | 7,162 | 531 | 18,254 | 57 | 79,984 | 45 | 18,827 | 11,880 | 30,752 | 460 | 615 | 21,008 | 116,510 |

Off-route refers to recoveries outside of the anticipated migration route back to a release site
** Eggs for this release were collected at Pahsimeroi, transferred to Sawtooth, and reared to smolts. Smolts were released from Pahsimeroi.
*** These releases had no CWT and a surrogate was used to generate downriver harvest and stray rates.
**** These releases were "off-site," meaning there was not a hatchery weir for fish to return to. Estimates of weir returns here are surrogate estimates of
**** returns to terminal areas.
These fields were not valid for that release group based on mark type, or there was not enough data to make an estimate based on a lack of X markings/tags.

Adult returns from BY11 provided harvest opportunities in tribal, sport and commercial fisheries in the Columbia and Snake River basins in 2014, 2015, and 2016 including 18,254 fish harvested in fisheries downstream of Lower Granite Dam and 30,752 fish harvested in fisheries above LGD (Table 28). Based on the total return, Rapid River had the highest harvest rate and Sawtooth had the lowest. Overall, 42.1\% of the total adult return from IDFG facilities was harvested in tribal, sport, and commercial fisheries.

Table 28. Returns, estimated harvest, and harvest rates above and below Lower Granite Dam from brood year 2011 Chinook Salmon released from Idaho Power Company and Lower Snake River Compensation Plan facilities in Idaho.

| Hatchery | Total Adult Returns | Harvest Below LGD | Harvest Above LGD | \% of Total <br> Adult <br> Return <br> Harvested <br> Below LGD | \% of Total <br> Adult <br> Return <br> Harvested | Total Adult Return Above LGD (PBT) | \% of Total Adult Return Above LGD Harvested Above LGD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| McCall | 22,207 | 6,846 | 2,571 | 30.8\% | 42.4\% | 11,106 | 23.1\% |
| Rapid R.* | 59,340 | 7,174 | 20,840 | 12.1\% | 47.2\% | 44,655 | 46.7\% |
| Clearwater | 21,926 | 2,427 | 5,446 | 11.1\% | 35.9\% | 15,940 | 34.2\% |
| Sawtooth | 8,044 | 1,070 | 1,459 | 13.3\% | 31.4\% | 5,546 | 26.3\% |
| Pahsimeroi | 4,993 | 737 | 436 | 14.8\% | 23.5\% | 2,737 | 15.9\% |
| TOTAL | 116,510 | 18,254 | 30,752 | 15.7\% | 42.1\% | 79,984 | 38.4\% |
| * Includes Little Salmon River and Hells Canyon Dam releases and harvest |  |  |  |  |  |  |  |

## Smolt-to-Adult Returns and Smolt-to-Adult Survival

Brood year 2011 smolt-to-adult survival rates (SAS) ranged from 0.50\% for the Pahsimeroi Ponds release to $2.07 \%$ for the Knox Bridge (McCall Fish Hatchery) release (Sullivan et al. 2018; Table 29). Brood year 2011 smolt-to-adult returns (SAR) from release-site to Lower Granite Dam ranged from $0.27 \%$ for the Pahsimeroi Ponds release to $1.44 \%$ for the Rapid River release (Table 29). Estimates of SAR were higher than the recent 5 -year average for McCall, Rapid River, Clearwater, and Sawtooth, and lower than the recent 5-year average for Pahsimeroi. Estimates of SAS were higher than the recent 5 -year average for all facilities.

Table 29. Brood year 2011 smolt-to-adult returns from release site to Lower Granite Dam and smolt-to-adult survivals for all Chinook Salmon release groups from LSRCP and IPC hatcheries operated by IDFG.

| Hatchery | Life Stage | Release Site | Number Released | Returns Above LGD (PBT) | Smolt-to-Adult Returns (SAR) | Total Adult Production | Smolt-to-Adult Survival (SAS) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| McCall | Seg. Smolt | Knox B. | 821,001 | 7,652 | 0.93\% | 16,877 | 2.06\% |
|  | Int. Smolt | Knox B. | 253,849 | 3,454 | 1.36\% | 5,330 | 2.10\% |
| McCall Hatchery Total |  |  | 1,074,850 | 11,106 | 1.03\% | 22,207 | 2.07\% |
| Rapid River | Smolt | RR Hatch | 2,497,668 | 35,843 | 1.44\% | 47,631 | 1.91\% |
|  | Smolt | L. Sal. R. | 200,000 | 2,870 | 1.44\% | 3,814 | 1.91\% |
|  | Smolt | HC Dam | 414,000 | 5,942 | 1.44\% | 7,895 | 1.91\% |
| Rapid River Total |  |  | 3,111,668 | 44,655 | 1.44\% | 59,340 | 1.91\% |
| Clearwater | Smolt | Powell | 408,421 | 4,170 | 1.02\% | 5,076 | 1.24\% |
|  | Smolt | Red River | 1,085,486 | 5,206 | 0.48\% | 7,151 | 0.66\% |
|  | Smolt | Crooked R. | 208,447 | 627 | 0.30\% | 1,917 | 0.92\% |
|  | Smolt | Clear Cr. | 378,083 | 2,579 | 0.68\% | 3,510 | 0.93\% |
|  | Smolt | Selway | 426,696 | 3,358 | 0.79\% | 4,272 | 1.00\% |
| Clearwater Hatchery Total |  |  | 2,507,133 | 15,940 | 0.64\% | 21,926 | 0.87\% |
| Sawtooth | Seg. Smolt | Saw. Hat. | 652,732 | 4,094 | 0.63\% | 5,620 | 0.86\% |
|  | Seg. Smolt | Pahsim. P. | 439,389 | 465 | 0.11\% | 1,037 | 0.02\% |
|  | Int. Smolt | Saw. Hat. | 134,132 | 987 | 0.74\% | 1,387 | 0.66\% |
| Sawtooth Hatchery Total |  |  | 1,226,253 | 5,546 | 0.45\% | 8,044 | 0.66\% |
| Pahsimeroi | Seg. Smolt | Pahsim. P. | 838,664 | 2,269 | 0.27\% | 4,363 | 0.52\% |
|  | Int. Smolt | Pahsim. P. | 167,209 | 468 | 0.28\% | 630 | 0.38\% |
| Pahsimeroi Hatchery Total |  |  | 1,005,873 | 2,737 | 0.27\% | 4,993 | 0.50\% |
| BROOD YEAR TOTAL |  |  | 8,925,777 | 79,984 | 0.90\% | 116,510 | 1.31\% |

## Progeny-to-Parent Ratio

Progeny- to-parent ratios (PPR) reflect the number of adult returns that were produced for each parent spawned in 2011. The PBT adult return estimates at LGD were used to estimate PPRs to LGD (i.e. Progeny-to-Parent at LGD). The total adult return estimate (i.e. Total Progeny) includes the adult return estimate to Bonneville based on PBT and PIT tag conversion rates, harvest downstream of Bonneville, and ocean harvest (Sullivan at al. 2018; Table 30).

Table 30. Progeny-to-parent ratios for brood year 2011 hatchery Chinook Salmon from LSRCP and IPC hatcheries operated by IDFG. Project area is measured as returns to LGD.

| Collection Facility IStock | Total Parents (Actual Spawned + Prespawn Morts) | Total Progeny to LGD (excluding Jacks) | Progeny-toParent at LGD | Total Progeny (excluding Jacks) | Progeny to Parent Ratio (Total) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| McCall | 732 | 7,185 | 9.82 | 15,858 | 21.66 |
| Rapid River | 2,429 | 39,479 | 16.25 | 52,922 | 21.79 |
| SF Clearwater | 938 | 5,152 | 5.49 | 7,935 | 8.46 |
| Powell* | 1,012 | 9,276 | 9.17 | 11,815 | 11.67 |
| Sawtooth | 517 | 4,559 | 8.82 | 6,808 | 13.17 |
| Pahsimeroi | 635 | 2,198 | 3.46 | 4,134 | 6.51 |
| Total | 6,263 | 67,849 | 10.83 | 99,472 | 15.88 |

* Includes returns from the Powell Ponds, Selway River, and Clear Creek smolt releases. 'Total Parents' includes fish spawned at Rapid River and Dworshak whose eggs were transferred to Clearwater Hatchery to meet production needs.


## SUMMARY

## Spawning, Rearing, and Release

Spawning operations in BY11 produced sufficient numbers of green eggs to meet hatchery production goals at all facilities except Sawtooth. Green-egg to smolt survival was lower than the five-year average at all facilities. We released 8,925,777 brood year 2011 smolts ( $98 \%$ of the release goal) from IDFG facilities between March-April 2013 (Table 31).

Table 31. Juvenile release numbers compared to release goals for brood year 2011 hatchery Chinook Salmon from LSRCP and IPC hatcheries operated by IDFG.

| Hatchery | Smolt Release Goal | Smolts Released (BY2010) | Release \% of Target |
| :--- | ---: | ---: | ---: |
| McCall | $1,000,000$ | $1,074,850$ | $107.5 \%$ |
| Rapid River | $3,000,000$ | $3,111,668$ | $103.7 \%$ |
| Clearwater | $2,335,000$ | $2,507,133$ | $107.4 \%$ |
| Sawtooth | $1,800,000$ | $1,226,253$ | $68.1 \%$ |
| Pahsimeroi | $1,000,000$ | $1,005,873$ | $100.6 \%$ |
| Total | $9,135,000$ | $8,925,777$ | $97.7 \%$ |

## Adult Survival Rates

Mitigation goals for the three LSRCP-funded hatcheries outlined in this report (see Table 1, Chapter 1) are based on the expected number of adults returning to Lower Granite Dam. To provide some measure of how the BY2011 releases performed relative to mitigation goals, we compared the SAS and SAR observed for the BY2011 releases at each facility to those needed to achieve annual mitigation goals based on the smolt release targets for BY2011. None of the three LSRCP funded facilities achieved the SAS needed to reach the basinwide adult mitigation goals. McCall was the closest to meeting their goal (52\%), followed by Clearwater (35\%), and Sawtooth (12\%). McCall and Clearwater exceeded the SARs needed to reach the project area adult mitigation goal above LGD while Sawtooth did not (Table 32).

Table 32. Adult mitigation goals and actual return numbers for brood year 2011 hatchery Chinook Salmon from LSRCP facilities operated by IDFG. SARs were estimated from release-site to Lower Granite Dam.

| Hatchery | Mitigation Goal Above LGD | SAR to Achieve Mitigation Goal Above LGD | Brood Year 2011 Actual SAR | Basinwide Mitigation Goal | SAS to <br> Achieve Basinwide Mitigation Goal | Brood Year 2011 Actual SAS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| McCall | 8,000 | 0.80\% | 1.03\% | 40,000 | 4.00\% | 2.07\% |
| Clearwater | 11,915 | 0.51\% | 0.64\% | 59,575 | 2.55\% | 0.88\% |
| Sawtooth | 19,445 | 1.08\% | 0.45\% | 97,225 | 5.40\% | 0.66\% |

## ACKNOWLEDGEMENTS

We would like to acknowledge the Pacific States Marine Fisheries Commission (PSMFC) and Idaho Power Company (IPC) for providing assistance with data collection and compilation. We thank all of the hatchery managers and their staffs for providing data. We thank Donald Whitney, Kim Apperson, Paul Janssen, and Jon Hansen for providing sport harvest information and both the Nez Perce and Shoshone Bannock tribes for providing tribal harvest information. Thank you to Brian Leth and for providing comments on the draft report and Cheryl Leben for providing formatting and editing.

## LITERATURE CITED

Dixon, P. F. 1987. Detection of Renibacterium salmoninarum by the enzyme-linked immunosorbent assay (ELISA). Journal of Applied Ichthyology 3(2):77-82.

Munson, D. A., D. G. Elliott, and K. A. Johnson. 2010. Management of Bacterial Kidney Disease in Idaho Department of Fish and Game Hatcheries on Broodstock Testing by Enzyme Linked Immunosorbent Assay (ELISA): A Multi-year Study. North American Journal of Fishery Management 30:940-955.

Sullivan, C., S. Rosenberger, and F. Bohlen. 2018. IPC and LSRCP Monitoring and Evaluation Programs in the State of Idaho: Calendar year 2015 and Brood Year 2009 Hatchery Chinook Salmon report. Idaho Department of Fish and Game. Report number 18-02. Boise.

Appendix A. In-hatchery metrics for spawning and early rearing of Chinook Salmon at McCall, Pahsimeroi, Clearwater, Rapid River, and Sawtooth fish hatcheries for brood years 1991 through 2011.

| Facility | Brood Year | Male Prespawn Mortality | Female Prespawn Mortality | Fecundity | Green Eggs Collected | Percent <br> Eye-up | Females Culled (Fish Health) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| McCall |  | 11.9\% | 14.8\% | 5,102 | 704,016 | 90.4\% | 0 |
| Rapid River |  | 7.6\% | 12.5\% | 3,886 | 2,553,218 | 94.5\% | 0 |
| Clearwater | 1991 | 13.6\% | 9.1\% | 4,840 | 12,100 | 66.4\% | 0 |
| Sawtooth |  | 2.6\% | 6.2\% | 5,191 | 922,000 | 86.2\% | 0 |
| Pahsimeroi |  | 0.0\% | 2.2\% | 5,025 | 437,157 | 96.7\% | 0 |
| McCall |  | 17.9\% | 19.5\% | 4,493 | 1,428,819 | 86.0\% | 7 |
| Rapid River |  | 21.9\% | 26.5\% | 3,852 | 4,534,400 | 91.3\% | 0 |
| Clearwater | 1992 | 6.9\% | 3.6\% | 4,058 | 543,878 | 91.0\% | 0 |
| Sawtooth |  | 1.5\% | 2.8\% | 4,503 | 468,300 | 90.5\% | 0 |
| Pahsimeroi |  | 0.0\% | 2.8\% | 4,918 | 172,139 | 97.6\% | 0 |
| McCall |  | 9.7\% | 7.0\% | 4,863 | 1,731,515 | 91.5\% | 41 |
| Rapid River |  | 20.9\% | 21.0\% | 4,344 | 4,228,155 | 93.3\% | 51 |
| Clearwater | 1993 | 23.3\% | 6.1\% | 4,600 | 1,651,269 | 84.4\% | 0 |
| Sawtooth |  | 0.0\% | 4.2\% | 5,332 | 369,340 | 92.5\% | 0 |
| Pahsimeroi |  | 0.0\% | 0.0\% | 5,765 | 167,200 | 94.8\% | 0 |
| McCall |  | 14.0\% | 14.0\% | 4,958 | 689,203 | 88.0\% | 0 |
| Rapid River |  | 15.3\% | 25.2\% | 4,221 | 514,962 | 91.3\% | 6 |
| Clearwater | 1994 | 5.6\% | 3.8\% | 4,607 | 327,085 | 92.8\% | 0 |
| Sawtooth |  | 5.3\% | 0.0\% | 4,276 | 29,933 | 87.6\% | 0 |
| Pahsimeroi ${ }^{1}$ |  | NA | NA | NA | NA | NA | NA |
| McCall |  | 0.0\% | 9.3\% | 4,707 | 268,307 | 93.4\% | 0 |
| Rapid River |  | 3.3\% | 18.6\% | 3,771 | 132,001 | 87.3\% | 0 |
| Clearwater | 1995 | 0.0\% | 0.0\% | 4,818 | 9,635 | 74.0\% | 0 |
| Sawtooth |  | 0.0\% | 0.0\% | 3,688 | 7,377 | 68.0\% | 0 |
| Pahsimeroi |  | 0.0\% | 2.8\% | 3,513 | 144,971 | 91.8\% | 0 |
| McCall |  | 3.0\% | 14.6\% | 4,384 | 486,644 | 89.6\% | 0 |
| Rapid River |  | 6.0\% | 7.7\% | 3,561 | 1,171,610 | 93.3\% | 0 |
| Clearwater | 1996 | 1.2\% | 4.8\% | 3,962 | 590,371 | 91.1\% | 0 |
| Sawtooth |  | 0.0\% | 0.0\% | 5,174 | 51,743 | 87.0\% | 0 |
| Pahsimeroi |  | 0.0\% | 0.0\% | 4,758 | 85,660 | 93.6\% | 0 |
| McCall |  | 7.1\% | 9.4\% | 4,497 | 2,532,059 | 86.2\% | 31 |
| Rapid River |  | 13.1\% | 17.4\% | 3,930 | 5,407,913 | 93.1\% | 238 |
| Clearwater | 1997 | 8.8\% | 5.8\% | 3,610 | 2,759,300 | 89.1\% | 172 |
| Sawtooth |  | 0.0\% | 7.0\% | 4,915 | 260,840 | 89.0\% | 0 |
| Pahsimeroi |  | 5.9\% | 5.9\% | 5,370 | 171,836 | 90.4\% | 0 |
| McCall |  | 19.2\% | 13.5\% | 4,793 | 1,433,237 | 80.8\% | 29 |
| Rapid River |  | 14.1\% | 17.3\% | 4,715 | 3,720,135 | 87.4\% | 66 |
| Clearwater | 1998 | 10.7\% | 12.6\% | 4,800 | 1,228,047 | 81.9\% | 54 |
| Sawtooth |  | 12.9\% | 10.0\% | 5,165 | 139,469 | 93.0\% | 0 |
| Pahsimeroi |  | 13.3\% | 13.3\% | 5,700 | 74,105 | 79.6\% | 0 |
| McCall |  | 9.9\% | 8.7\% | 4,423 | 1,892,572 | 83.7\% | 28 |
| Rapid River |  | 1.0\% | 2.0\% | 4,406 | 634,520 | 91.5\% | 6 |
| Clearwater | 1999 | 3.3\% | 8.0\% | 4,940 | 148,554 | 83.0\% | 3 |
| Sawtooth |  | 3.5\% | 7.7\% | 5,303 | 63,642 | 93.3\% | 0 |


| Facility | Brood Year | Male Prespawn Mortality | Female Prespawn Mortality | Fecundity | Green Eggs Collected | Percent Eye-up | Females Culled (Fish Health) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pahsimeroi |  | 1.8\% | 10.2\% | 4,701 | 371,354 | 81.0\% | 0 |
| McCall |  | 6.5\% | 5.1\% | 4,377 | 1,580,053 | 86.0\% | 38 |
| Rapid River |  | 2.5\% | 6.4\% | 3,900 | 5,101,200 | 92.1\% | 69 |
| Clearwater | 2000 | 16.1\% | 9.6\% | 3,846 | 2,750,100 | 86.5\% | 221 |
| Sawtooth |  | 1.8\% | 2.2\% | 5,163 | 454,355 | 92.6\% | 0 |
| Pahsimeroi |  | 11.5\% | 14.0\% | 5,154 | 633,906 | 88.4\% | 11 |
| McCall |  | 21.2\% | 24.7\% | 4,354 | 1,793,667 | 74.8\% | 40 |
| Rapid River |  | 30.8\% | 36.0\% | 3,796 | 4,946,188 | 89.5\% | 425 |
| Clearwater | 2001 | 8.6\% | 8.3\% | 3,954 | 4,577,790 | 91.4\% | 307 |
| Sawtooth |  | 7.3\% | 8.6\% | 4,950 | 1,529,051 | 89.7\% | 85 |
| Pahsimeroi |  | 3.9\% | 17.5\% | 5,000 | 1,699,097 | 88.7\% | 13 |
| McCall |  | 18.3\% | 38.4\% | 4,747 | 1,804,033 | 87.3\% | 37 |
| Rapid River |  | 16.9\% | 22.1\% | 3,522 | 4,839,228 | 87.7\% | 198 |
| Clearwater | 2002 | 8.8\% | 13.6\% | 3,982 | 3,657,588 | 95.8\% | 103 |
| Sawtooth |  | 4.1\% | 29.1\% | 5,348 | 1,037,558 | 88.7\% | 3 |
| Pahsimeroi |  | 1.5\% | 9.9\% | 4,917 | 1,293,123 | 90.8\% | 14 |
| McCall |  | 17.6\% | 45.9\% | 5,401 | 2,598,233 | 83.1\% | 63 |
| Rapid River |  | 31.9\% | 48.2\% | 5,290 | 3,530,501 | 92.6\% | 104 |
| Clearwater | 2003 | 4.9\% | 14.8\% | 4,855 | 399,620 | 92.6\% | 171 |
| Sawtooth |  | 11.5\% | 8.3\% | 5,290 | 174,575 | 83.5\% | 1 |
| Pahsimeroi |  | 7.4\% | 7.5\% | 5,587 | 1,257,180 | 87.4\% | 121 |
| McCall |  | 9.9\% | 21.3\% | 4,460 | 2,038,292 | 86.5\% | 48 |
| Rapid River |  | 12.6\% | 24.3\% | 3,596 | 4,382,092 | 93.2\% | 86 |
| Clearwater | 2004 | 15.1\% | 5.2\% | 3,950 | 2,915,056 | 94.0\% | 81 |
| Sawtooth |  | 2.2\% | 1.8\% | 4,912 | 1,999,254 | 87.7\% | 10 |
| Pahsimeroi |  | 5.0\% | 2.6\% | 4,404 | 1,620,513 | 86.9\% | 70 |
| McCall |  | 11.6\% | 7.4\% | 4,602 | 2,001,830 | 88.8\% | 49 |
| Rapid River |  | 5.5\% | 11.0\% | 3,641 | 4,478,430 | 89.2\% | 20 |
| Clearwater | 2005 | 1.3\% | 4.3\% | 3,939 | 795,663 | 95.8\% | 5 |
| Sawtooth |  | 20.0\% | 15.4\% | 3,985 | 1,183,537 | 88.9\% | 4 |
| Pahsimeroi |  | 3.0\% | 10.0\% | 4,636 | 1,335,191 | 80.2\% | 43 |
| McCall |  | 5.5\% | 9.4\% | 4,470 | 1,931,415 | 86.9\% | 64 |
| Rapid River |  | 2.8\% | 7.6\% | 3,429 | 4,439,991 | 93.6\% | 58 |
| Clearwater | 2006 | 1.4\% | 7.4\% | 3,468 | 2,807,896 | 95.8\% | 11 |
| Sawtooth |  | 33.1\% | 68.1\% | 3,729 | 223,758 | 84.4\% | 3 |
| Pahsimeroi |  | 4.9\% | 6.1\% | 4,885 | 1,349,657 | 94.4\% | 35 |
| McCall |  | 9.8\% | 8.1\% | 4,560 | 1,527,720 | 84.8\% | 42 |
| Rapid River |  | 2.1\% | 9.6\% | 3,814 | 6,414,726 | 74.9\% | 143 |
| Clearwater | 2007 | 5.8\% | 28.9\% | 3,661 | 2,517,871 | 93.6\% | 15 |
| Sawtooth |  | 0.1\% | 4.1\% | 5,231 | 376,693 | 82.4\% | 1 |
| Pahsimeroi |  | 4.0\% | 11.5\% | 4,961 | 1,007,091 | 97.1\% | 12 |
| McCall |  | 30.2\% | 34.4\% | 4,833 | 2,073,280 | 68.5\% | 15 |
| Rapid River |  | 2.1\% | 9.3\% | 3,915 | 7,407,180 | 93.4\% | 644 |
| Clearwater | 2008 | 1.2\% | 3.5\% | 4,345 | 4,637,192 | 93.4\% | 103 |
| Sawtooth |  | 2.2\% | 3.2\% | 4,956 | 2,946,299 | 93.3\% | 10 |
| Pahsimeroi |  | 3.0\% | 0.5\% | 4,786 | 1,630,995 | 87.6\% | 1 |
| McCall | 2009 | 23.0\% | 33.0\% | 4,987 | 2,330,792 | 89.1\% | 80 |
| Rapid River | 2009 | 3.9\% | 8.4\% | 4,224 | 5,440,512 | 96.5\% | 67 |


| Facility | Brood <br> Year | Male <br> Prespawn <br> Mortality | Female <br> Prespawn <br> Mortality | Fecundity | Green Eggs <br> Collected | Percent <br> Eye-up | Females <br> Culled <br> (Fish <br> Health) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clearwater |  | $2.4 \%$ | $3.3 \%$ | 4,126 | $3,387,415$ | $95.2 \%$ | 61 |
| Sawtooth |  | $1.7 \%$ | $0.4 \%$ | 4,958 | $2,568,097$ | $94.0 \%$ | 28 |
| Pahsimeroi |  | $5.0 \%$ | $5.0 \%$ | 5,127 | $1,593,189$ | $91.8 \%$ | 41 |
| McCall |  | $10.0 \%$ | $12.7 \%$ | 5,297 | $2,240,173$ | $90.0 \%$ | 83 |
| Rapid River |  | $4.8 \%$ | $9.7 \%$ | 3,983 | $5,803,231$ | $96.0 \%$ | 203 |
| Clearwater | 2010 | $1.2 \%$ | $23.0 \%$ | 3,888 | $2,160,540$ | $95.8 \%$ | 33 |
| Sawtooth |  | $2.5 \%$ | $2.2 \%$ | 4,907 | $1,736,980$ | $89.2 \%$ | 7 |
| Pahsimeroi |  | $3.3 \%$ | $4.8 \%$ | 4,823 | $1,403,439$ | $91.2 \%$ | 3 |
| McCall |  | $4.7 \%$ | $17.8 \%$ | 5,045 | $1,987,584$ | $93.6 \%$ | 5 |
| Rapid River |  | $5.4 \%$ | $14.9 \%$ | 4,049 | $4,405,312$ | $96.0 \%$ | 29 |
| Clearwater | 2011 | $3.0 \%$ | $4.4 \%$ | 3,574 | $3,829,144$ | $93.4 \%$ | 76 |
| Sawtooth |  | $0.0 \%$ | $2.9 \%$ | 4,949 | $1,004,691$ | $85.5 \%$ | 8 |
| Pahsimeroi |  | $5.0 \%$ | $16.0 \%$ | 4,602 | $1,676,600$ | $89.3 \%$ | 18 |
| McCall |  | $15.7 \%$ | $19.5 \%$ | 4,829 | $2,020,676$ | $84.0 \%$ | 57 |
| Rapid River | 5 year | $3.1 \%$ | $8.9 \%$ | 3,873 | $5,901,128$ | $90.4 \%$ | 223 |
| Clearwater | $2.4 \%$ | $13.2 \%$ | 3,898 | $3,102,183$ | $94.6 \%$ | 45 |  |
| Sawtooth |  | $7.9 \%$ | $15.6 \%$ | 4,756 | $1,570,365$ | $91.8 \%$ | 10 |
| Pahsimeroi |  | $4.0 \%$ | $5.6 \%$ | 4,916 | $1,396,874$ | $92.0 \%$ | 18 |

${ }^{1}$ No BY 1994 data available for Pahsimeroi because there was no production.

Appendix B. Green-egg-to-smolt survival rates for LSRCP and IPC facilities operated by IDFG for brood years 1991 through 2011. Recent 5-year average was calculated using brood years 2006-2010 for comparison to brood year 2011.

| Brood Year | McCall | Sawtooth | Clearwater | Rapid River | Pahsimeroi |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | $95.2 \%$ | $97.5 \%$ | $85.9 \%$ | $88.5 \%$ | $85.8 \%$ |
| 1992 | $86.9 \%$ | $50.5 \%$ | $89.6 \%$ | $83.6 \%$ | $75.8 \%$ |
| 1993 | $82.7 \%$ | $97.9 \%$ | $82.4 \%$ | $83.4 \%$ | $88.2 \%$ |
| 1994 | $96.4 \%$ | $95.3 \%$ | $93.0 \%$ | $89.6 \%$ | NA |
| 1995 | $95.2 \%$ | $95.6 \%$ | $90.9 \%$ | $66.1 \%$ | $77.3 \%$ |
| 1996 | $96.0 \%$ | $95.6 \%$ | $93.3 \%$ | $90.5 \%$ | $76.6 \%$ |
| 1997 | $84.1 \%$ | $96.3 \%$ | $80.9 \%$ | $93.5 \%$ | $79.0 \%$ |
| 1998 | $98.8 \%$ | $95.2 \%$ | $77.9 \%$ | $87.2 \%$ | $72.6 \%$ |
| 1999 | $90.8 \%$ | $96.2 \%$ | $90.7 \%$ | $89.9 \%$ | $76.2 \%$ |
| 2000 | $92.6 \%$ | $91.7 \%$ | $82.2 \%$ | $87.6 \%$ | $80.4 \%$ |
| 2001 | $98.0 \%$ | $78.0 \%$ | $88.1 \%$ | $78.5 \%$ | $71.0 \%$ |
| 2002 | $88.2 \%$ | $88.3 \%$ | $77.2 \%$ | $N A$ | $90.6 \%$ |
| 2003 | $77.6 \%$ | $92.5 \%$ | $75.9 \%$ | $N A$ | $77.6 \%$ |
| 2004 | $77.9 \%$ | $88.6 \%$ | $93.6 \%$ | $85.3 \%$ | $81.8 \%$ |
| 2005 | $82.2 \%$ | $84.2 \%$ | $94.9 \%$ | $81.2 \%$ | $74.0 \%$ |
| 2006 | $78.8 \%$ | $77.8 \%$ | $76.9 \%$ | $89.5 \%$ | $76.9 \%$ |
| 2007 | $82.1 \%$ | $72.9 \%$ | $77.1 \%$ | $63.7 \%$ | $86.5 \%$ |
| 2008 | $57.9 \%$ | $64.1 \%$ | $67.0 \%$ | $78.3 \%$ | $71.7 \%$ |
| 2009 | $86.6 \%$ | $71.4 \%$ | $59.5 \%$ | $73.6 \%$ | $74.5 \%$ |
| 2010 | $87.5 \%$ | $83.8 \%$ | $82.6 \%$ | $95.4 \%$ | $73.2 \%$ |
| 2011 | $81.0 \%$ | $73.4 \%$ | $75.0 \%$ | $70.6 \%$ | $74.6 \%$ |
| Recent 5-year | $78.6 \%$ | $74.0 \%$ | $72.6 \%$ | $80.1 \%$ | $76.6 \%$ |
| Average |  |  |  |  |  |
|  |  |  |  |  |  |

Appendix C. Age composition of total (harvest, and escapement) Chinook Salmon returns from LSRCP and IPC facilities operated by IDFG for brood years 1991 through 2011.

| Brood <br> Year | Clearwater |  |  | McCall |  |  | Pahsimeroi |  |  | Rapid River |  |  | Sawtooth |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 Ocean | 2 Ocean | 3 Ocean | 1 Ocean | 2 Ocean | 3 Ocean | 1 Ocean | 2 Ocean | 3 Ocean | 1 Ocean | 2 Ocean | 3 Ocean | 1 Ocean | 2 Ocean | 3 Ocean |
| 1991 | 38.5\% | 0.0\% | 61.5\% | 23.4\% | 62.3\% | 14.3\% | 10.0\% | 90.0\% | 0.0\% | 6.5\% | 65.0\% | 28.5\% | 22.2\% | 66.7\% | 11.1\% |
| 1992 | 3.1\% | 68.3\% | 28.6\% | 21.1\% | 65.7\% | 13.2\% | 4.4\% | 75.6\% | 20.0\% | 2.5\% | 30.5\% | 67.0\% | 20.0\% | 57.5\% | 22.5\% |
| 1993 | 5.1\% | 77.6\% | 17.3\% | 12.4\% | 74.9\% | 12.8\% | 5.0\% | 60.4\% | 34.7\% | 4.5\% | 83.6\% | 11.8\% | 13.1\% | 71.5\% | 15.3\% |
| 1994 | 3.0\% | 77.3\% | 19.7\% | 6.3\% | 50.9\% | 42.7\% | NA | NA | NA | 9.0\% | 77.7\% | 13.3\% | 20.0\% | 20.0\% | 60.0\% |
| 1995 | 7.6\% | 39.4\% | 53.0\% | 6.4\% | 89.4\% | 4.1\% | 8.3\% | 86.0\% | 5.7\% | 13.4\% | 41.6\% | 44.9\% | 0.0\% | 27.9\% | 72.1\% |
| 1996 | 5.0\% | 57.7\% | 37.3\% | 18.7\% | 76.9\% | 4.4\% | 31.4\% | 67.5\% | 1.1\% | 6.6\% | 74.3\% | 19.1\% | 26.0\% | 60.4\% | 13.6\% |
| 1997 | 5.8\% | 85.8\% | 8.5\% | 15.9\% | 73.3\% | 10.8\% | 15.3\% | 76.3\% | 8.3\% | 5.8\% | 88.9\% | 5.3\% | 15.2\% | 70.6\% | 14.2\% |
| 1998 | 1.9\% | 65.7\% | 32.5\% | 6.6\% | 67.2\% | 26.2\% | 4.9\% | 70.8\% | 24.2\% | 8.9\% | 60.6\% | 30.5\% | 16.3\% | 69.4\% | 14.3\% |
| 1999 | 3.3\% | 84.7\% | 11.9\% | 18.5\% | 74.1\% | 7.3\% | 15.4\% | 81.7\% | 3.0\% | 19.3\% | 72.7\% | 8.0\% | 34.4\% | 65.6\% | 0.0\% |
| 2000 | 7.2\% | 90.0\% | 2.8\% | 18.1\% | 78.7\% | 3.2\% | 23.7\% | 74.2\% | 2.1\% | 8.4\% | 89.3\% | 2.3\% | 28.9\% | 66.6\% | 4.5\% |
| 2001 | 17.2\% | 72.7\% | 10.1\% | 22.6\% | 73.8\% | 3.6\% | 15.0\% | 71.2\% | 13.9\% | 12.6\% | 83.5\% | 4.0\% | 31.6\% | 63.2\% | 5.2\% |
| 2002 | 4.1\% | 79.4\% | 16.4\% | 13.6\% | 75.6\% | 10.8\% | 8.2\% | 62.3\% | 29.5\% | 2.3\% | 75.4\% | 22.3\% | 19.5\% | 61.3\% | 19.2\% |
| 2003 | 7.4\% | 71.6\% | 21.0\% | 8.7\% | 77.5\% | 13.8\% | 10.4\% | 64.2\% | 25.3\% | 3.9\% | 71.5\% | 24.6\% | 10.8\% | 63.8\% | 25.4\% |
| 2004 | 9.9\% | 85.4\% | 4.7\% | 20.8\% | 74.7\% | 4.6\% | 12.4\% | 62.5\% | 25.1\% | 15.7\% | 82.3\% | 2.0\% | 21.4\% | 73.3\% | 5.3\% |
| 2005 | 26.2\% | 71.5\% | 2.3\% | 29.9\% | 65.0\% | 5.1\% | 16.8\% | 77.6\% | 5.6\% | 25.5\% | 70.9\% | 3.6\% | 34.7\% | 63.7\% | 1.6\% |
| 2006 | 22.3\% | 65.7\% | 12.0\% | 34.0\% | 60.2\% | 5.8\% | 24.0\% | 66.4\% | 9.6\% | 22.5\% | 72.5\% | 5.1\% | 36.7\% | 55.9\% | 7.4\% |
| 2007 | 10.3\% | 78.4\% | 11.3\% | 22.9\% | 71.8\% | 5.3\% | 18.9\% | 76.9\% | 4.2\% | 10.3\% | 81.5\% | 8.1\% | 24.4\% | 58.3\% | 17.3\% |
| 2008 | 30.2\% | 68.1\% | 1.7\% | 45.2\% | 50.5\% | 4.3\% | 42.7\% | 55.8\% | 1.5\% | 32.1\% | 64.5\% | 3.4\% | 53.0\% | 43.3\% | 3.7\% |
| 2009 | 15.1\% | 78.3\% | 6.6\% | 15.3\% | 79.4\% | 5.3\% | 5.5\% | 92.1\% | 2.4\% | 11.1\% | 87.3\% | 1.6\% | 21.4\% | 71.2\% | 7.5\% |
| 2010 | 21.2\% | 77.8\% | 1.0\% | 25.9\% | 69.1\% | 5.1\% | 34.7\% | 64.1\% | 1.2\% | 14.8\% | 82.8\% | 2.4\% | 37.8\% | 58.0\% | 4.2\% |
| 2011 | 9.9\% | 86.1\% | 4.0\% | 27.6\% | 64.8\% | 7.7\% | 10.3\% | 79.4\% | 10.3\% | 10.8\% | 83.0\% | 6.2\% | 10.4\% | 78.0\% | 11.6\% |
| Recent Fiveyear Average | 19.8\% | 73.7\% | 6.5\% | 28.7\% | 66.2\% | 5.2\% | 25.2\% | 71.1\% | 3.8\% | 18.2\% | 77.7\% | 4.1\% | 34.7\% | 57.3\% | 8.0\% |

Appendix D. Number of juveniles released, size at release, juvenile survival to LGD, and SAR and SAS for smolts released from LSRCP and IPC facilities for brood years 1991 through 2011 by facility and by funding source. Adult returns to LGD are based on parentage based tagging estimates from brood year 2011 forward. Total adult returns are based on PBT estimates at LGD and PIT tag conversion rates from Bonneville to LGD from brood year 2011 forward.

| Facility | Brood Year | Juvenile Production Smolt Release | Size at Release (fpp) | Weighted Average Juvenile Survival | Adult Returns to LGD | SAR | Total Adult Returns | SAS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clearwater (LSRCP) | 1991 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | 1992 | 535,394 | 13.8 | 79.2\% | 620 | 0.116\% | 670 | 0.125\% |
|  | 1993 | 828,325 | 18.5 | 60.4\% | 2,298 | 0.277\% | 2,442 | 0.295\% |
|  | 1994 | 361,622 | 17.5 | 58.7\% | 416 | 0.115\% | 446 | 0.123\% |
|  | 1995 | 7,905 | 17.6 | 48.8\% | 65 | 0.822\% | 65 | 0.822\% |
|  | 1996 | 763,745 | 13.9 | 64.9\% | 4,359 | 0.571\% | 4,490 | 0.588\% |
|  | 1997 | 1,582,014 | 16.4 | 74.3\% | 13,856 | 0.876\% | 16,793 | 1.061\% |
|  | 1998 | 848,583 | 16.1 | 67.7\% | 6,062 | 0.714\% | 8,583 | 1.011\% |
|  | 1999 | 297,297 | 12.5 | 63.0\% | 1,878 | 0.632\% | 1,965 | 0.661\% |
|  | 2000 | 1,633,170 | 15.8 | 53.4\% | 6,756 | 0.414\% | 6,954 | 0.426\% |
|  | 2001 | 1,618,593 | 22.0 | 51.2\% | 1,634 | 0.101\% | 1,754 | 0.108\% |
|  | 2002 | 1,481,982 | 16.6 | 61.3\% | 2,136 | 0.144\% | 2,223 | 0.150\% |
|  | 2003 | 1,505,666 | 15.7 | 67.3\% | 2,372 | 0.158\% | 2,870 | 0.191\% |
|  | 2004 | 1,914,079 | 16.0 | 62.1\% | 6,569 | 0.343\% | 10,711 | 0.560\% |
|  | 2005 | 1,670,006 | 15.8 | 72.0\% | 4,966 | 0.297\% | 6,515 | 0.390\% |
|  | 2006 | 1,666,314 | 16.7 | 57.0\% | 6,153 | 0.390\% | 9,961 | 0.640\% |
|  | 2007 | 2,145,480 | 16.6 | 51.5\% | 5,768 | 0.269\% | 7,577 | 0.353\% |
|  | 2008 | 2,251,033 | 15.0 | 74.4\% | 7,721 | 0.343\% | 9,735 | 0.432\% |
|  | 2009 | 2,438,452 | 16.8 | 54.3\% | 2,001 | 0.082\% | 2,404 | 0.099\% |
|  | 2010 | 2,387,106 | 16.8 | 66.8\% | 8,041 | 0.337\% | 10,096 | 0.423\% |
|  | 2011 | 2,507,133 | 20.2 | 61.8\% | 15,940 | 0.636\% | 21,926 | 0.875\% |
| Clearwater Totals |  | 28,443,899 | 16.5 | 62.5\% | 99,611 | 0.350\% | 128,180 | 0.451\% |
| McCall (LSRCP) | 1991 | 308,300 | 19.2 | 52.3\% | 290 | 0.094\% | 293 | 0.095\% |
|  | 1992 | 824,224 | 26.9 | 54.5\% | 413 | 0.050\% | 413 | 0.050\% |
|  | 1993 | 763,705 | 21.8 | 43.2\% | 4,690 | 0.614\% | 4,755 | 0.623\% |
|  | 1994 | 351,340 | 17.9 | 54.6\% | 514 | 0.146\% | 534 | 0.152\% |
|  | 1995 | 122,766 | 24.5 | 42.7\% | 1,254 | 1.021\% | 1,254 | 1.021\% |
|  | 1996 | 393,872 | 17.5 | 59.1\% | 5,320 | 1.351\% | 5,435 | 1.380\% |
|  | 1997 | 1,055,673 | 23.9 | 64.8\% | 21,650 | 2.051\% | 22,960 | 2.175\% |
|  | 1998 | 845,244 | 23.3 | 67.0\% | 16,341 | 1.933\% | 16,846 | 1.993\% |
|  | 1999 | 1,077,077 | 19.4 | 68.3\% | 8,583 | 0.797\% | 8,867 | 0.823\% |
|  | 2000 | 1,062,870 | 23.0 | 59.2\% | 13,474 | 1.268\% | 15,024 | 1.414\% |
|  | 2001 | 1,054,242 | 21.1 | 57.4\% | 5,918 | 0.561\% | 6,331 | 0.601\% |
|  | 2002 | 914,060 | 20.9 | 56.0\% | 3,026 | 0.331\% | 3,866 | 0.423\% |


| Facility | Brood Year | Juvenile Production Smolt Release | Size at Release (fpp) | Weighted Average Juvenile Survival | Adult Returns to LGD | SAR |  | SAS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | 1,047,530 | 20.9 | 60.4\% | 3,390 | 0.324\% | 3,856 | 0.368\% |
|  | 2004 | 1,094,264 | 18.1 | 63.8\% | 9,897 | 0.904\% | 10,692 | 0.977\% |
|  | 2005 | 1,087,170 | 19.1 | 55.0\% | 10,773 | 0.991\% | 11,905 | 1.095\% |
|  | 2006 | 1,060,540 | 18.4 | 58.7\% | 19,966 | 1.880\% | 22,800 | 2.150\% |
|  | 2007 | 1,106,700 | 21.1 | 51.2\% | 6,274 | 0.567\% | 9,200 | 0.831\% |
|  | 2008 | 1,037,600 | 20.8 | 56.5\% | 7,009 | 0.676\% | 9,472 | 0.913\% |
|  | 2009 | 1,069,028 | 18.5 | 62.9\% | 3,508 | 0.328\% | 4,345 | 0.406\% |
|  | 2010 | 1,028,353 | 20.0 | 55.9\% | 5,881 | 0.572\% | 8,815 | 0.857\% |
|  | 2011 | 1,074,850 | 17.0 | 64.9\% | 11,106 | 1.033\% | 22,207 | 2.066\% |
| McCall Totals |  | 18,379,408 | 20.6 | 57.5\% | 159,277 | 0.867\% | 189,870 | 1.033\% |
| Sawtooth (LSRCP) | 1991 | 144,925 | 25.0 | 18.6\% | 2 | 0.001\% | 2 | 0.001\% |
|  | 1992 | 141,530 | 25.0 | 20.7\% | 33 | 0.023\% | 33 | 0.023\% |
|  | 1993 | 103,695 | 22.0 | 23.0\% | 106 | 0.102\% | 106 | 0.102\% |
|  | 1994 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | 1995 | 4,650 | 12.0 | 51.7\% | 43 | 0.925\% | 43 | 0.925\% |
|  | 1996 | 43,161 | 13.9 | 62.8\% | 235 | 0.544\% | 235 | 0.544\% |
|  | 1997 | 117,442 | 21.8 | 49.2\% | 1,171 | 0.997\% | 1,275 | 1.086\% |
|  | 1998 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | 1999 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | 2000 | 265,642 | 15.4 | 58.5\% | 1,285 | 0.484\% | 1,361 | 0.512\% |
|  | 2001 | 960,193 | 20.1 | 60.8\% | 1,519 | 0.158\% | 1,589 | 0.165\% |
|  | 2002 | 624,739 | 21.0 | 59.2\% | 724 | 0.116\% | 749 | 0.120\% |
|  | 2003 | 134,769 | 19.0 | 22.0\% | 213 | 0.158\% | 213 | 0.158\% |
|  | 2004 | 1,552,444 | 21.7 | 65.3\% | 6,114 | 0.394\% | 6,571 | 0.423\% |
|  | 2005 | 995,262 | 17.2 | 57.5\% | 6,360 | 0.639\% | 6,871 | 0.690\% |
|  | 2006 | 174,132 | 19.1 | 34.1\% | 1,089 | 0.630\% | 1,181 | 0.680\% |
|  | 2007 | 274,644 | 13.9 | 37.7\% | 549 | 0.200\% | 641 | 0.233\% |
|  | 2008 | 1,854,078 | 21.9 | 42.3\% | 8,209 | 0.443\% | 10,476 | 0.565\% |
|  | 2009 | 1,735,179 | 23.0 | 48.7\% | 1,970 | 0.114\% | 2,192 | 0.126\% |
|  | 2010 | 1,456,221 | 28.0 | 44.4\% | 4,617 | 0.317\% | 5,500 | 0.378\% |
|  | 2011 | 1,226,253 | 20.5 | 57.3\% | 6,076 | 0.495\% | 8,044 | 0.656\% |
| Sawtooth Total |  | 11,808,959 | 20.0 | 45.2\% | 40,315 | 0.341\% | 47,082 | 0.399\% |
| Pahsimeroi (IPC) | 1991 | 260,091 | 13.2 | 46.8\% | 58 | 0.022\% | 58 | 0.022\% |
|  | 1992 | 81,367 | 13.9 | 32.6\% | 38 | 0.047\% | 38 | 0.047\% |
|  | 1993 | 82,683 | 12.3 | 1 | 1 | 0.001\% | 1 | 0.001\% |
|  | 1994 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | 1995 | 85,838 | 20.0 | 50.5\% | 229 | 0.267\% | 229 | 0.267\% |
|  | 1996 | 65,648 | 11.1 | 42.5\% | 280 | 0.427\% | 280 | 0.427\% |
|  | 1997 | 135,669 | 9.9 | 58.6\% | 1,056 | 0.778\% | 1,056 | 0.778\% |


| Facility | Brood | Juvenile <br> Production | Size at <br> Release <br> (fpp) | Weighted <br> Average <br> Juvenile <br> Survival | Returns <br> Reto LGD | SAR | Total <br> Adult | SAS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Facility | Brood Year | Juvenile Production Smolt Release | Size at Release (fpp) | Weighted Average Juvenile Survival | Adult Returns to LGD | SAR | Total Adult Returns | SAS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IPC Facility Totals (PFH,RRFH) | 1992 | 2,009,513 | 1 | 43.3\% | 8,722 | 0.434\% | 8,796 | 0.438\% |
|  | 1993 | 3,369,138 | / | 72.3\% | 20,178 | 0.599\% | 20,973 | 0.623\% |
|  | 1994 | 379,167 | 1 | 59.4\% | 614 | 0.162\% | 656 | 0.173\% |
|  | 1995 | 207,855 | 1 | 44.9\% | 594 | 0.286\% | 594 | 0.286\% |
|  | 1996 | 961,818 | 1 | 54.4\% | 10,434 | 1.085\% | 11,250 | 1.170\% |
|  | 1997 | 3,482,953 | 1 | 65.9\% | 38,082 | 1.093\% | 54,260 | 1.558\% |
|  | 1998 | 2,516,191 | 1 | 69.0\% | 25,166 | 1.000\% | 37,376 | 1.485\% |
|  | 1999 | 933,725 | 1 | 68.8\% | 6,439 | 0.690\% | 7,343 | 0.786\% |
|  | 2000 | 3,742,867 | 1 | 72.0\% | 15,593 | 0.417\% | 24,663 | 0.659\% |
|  | 2001 | 3,524,993 | 1 | 70.3\% | 8,063 | 0.229\% | 10,795 | 0.306\% |
|  | 2002 | 4,546,663 | 1 | 59.8\% | 7,637 | 0.168\% | 8,976 | 0.197\% |
|  | 2003 | 3,336,682 | 1 | 47.9\% | 5,802 | 0.174\% | 7,257 | 0.217\% |
|  | 2004 | 4,204,479 | 1 | 51.3\% | 15,431 | 0.367\% | 22,568 | 0.537\% |
|  | 2005 | 3,861,191 | 1 | 63.6\% | 17,974 | 0.466\% | 23,920 | 0.619\% |
|  | 2006 | 4,222,226 | 1 | 62.6\% | 52,134 | 1.235\% | 75,820 | 1.796\% |
|  | 2007 | 4,076,553 | 1 | 61.8\% | 22,772 | 0.559\% | 26,299 | 0.645\% |
|  | 2008 | 4,392,703 | 1 | 57.7\% | 17,224 | 0.392\% | 23,166 | 0.527\% |
|  | 2009 | 4,113,209 | 1 | 64.4\% | 7,588 | 0.184\% | 9,666 | 0.235\% |
|  | 2010 | 4,143,046 | 1 | 66.4\% | 24,239 | 0.585\% | 30,386 | 0.733\% |
|  | 2011 | 4,117,541 | 1 | 70.6\% | 47,023 | 1.142\% | 64,333 | 1.562\% |
| IPC GRAND TOTAL |  | 64,663,104 | 1 | 62.3\% | 351,844 | 0.544\% | 469,232 | 0.726\% |
|  | 1991 | 453,225 | 1 | 35.5\% | 292 | 0.064\% | 295 | 0.065\% |
|  | 1992 | 1,501,148 | 1 | 51.5\% | 1,066 | 0.071\% | 1,116 | 0.074\% |
|  | 1993 | 1,695,725 | 1 | 42.2\% | 7,094 | 0.418\% | 7,303 | 0.431\% |
|  | 1994 | 712,962 | 1 | 56.7\% | 930 | 0.130\% | 980 | 0.137\% |
|  | 1995 | 135,321 | 1 | 47.7\% | 1,362 | 1.006\% | 1,362 | 1.006\% |
|  | 1996 | 1,200,778 | 1 | 62.3\% | 9,914 | 0.826\% | 10,160 | 0.846\% |
|  | 1997 | 2,755,129 | 1 | 62.8\% | 36,677 | 1.331\% | 41,028 | 1.489\% |
|  | 1998 | 1,693,827 | 1 | 67.4\% | 22,403 | 1.323\% | 25,429 | 1.501\% |
| LSRCP Facility Totals (MFH,CFH,SFH) | 1999 | 1,374,374 | / | 65.7\% | 10,461 | 0.761\% | 10,832 | 0.788\% |
|  | 2000 | 2,961,682 | 1 | 57.0\% | 21,515 | 0.726\% | 23,339 | 0.788\% |
|  | 2001 | 3,633,028 | 1 | 56.5\% | 9,071 | 0.250\% | 9,674 | 0.266\% |
|  | 2002 | 3,020,781 | 1 | 58.8\% | 5,886 | 0.195\% | 6,838 | 0.226\% |
|  | 2003 | 2,687,965 | 1 | 49.9\% | 5,975 | 0.222\% | 6,939 | 0.258\% |
|  | 2004 | 4,560,787 | 1 | 63.7\% | 22,580 | 0.495\% | 27,974 | 0.613\% |
|  | 2005 | 3,752,438 | 1 | 61.5\% | 22,099 | 0.589\% | 25,291 | 0.674\% |
|  | 2006 | 2,900,986 | 1 | 49.9\% | 27,208 | 0.938\% | 33,942 | 1.170\% |
|  | 2007 | 3,526,824 | 1 | 46.8\% | 12,591 | 0.357\% | 17,418 | 0.494\% |
|  | 2008 | 5,142,711 | 1 | 57.7\% | 22,939 | 0.446\% | 29,683 | 0.577\% |


| Facility | Brood <br> Year | Juvenile <br> Production <br> Smolt <br> Release | Size at <br> Release <br> (fpp) | Weighted <br> Average <br> Juvenile <br> Survival | Adult <br> Returns <br> to LGD | SAR | Total <br> Adult <br> Returns | SAS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2009 | $5,242,659$ | $/$ | $55.3 \%$ | 7,479 | $0.143 \%$ | 8,941 | $0.171 \%$ |
|  | 2010 | $4,871,680$ | $/$ | $55.7 \%$ | 18,539 | $0.381 \%$ | 24,411 | $0.501 \%$ |
|  | 2011 | $4,808,236$ | $/$ | $61.3 \%$ | 33,122 | $0.689 \%$ | 52,177 | $1.085 \%$ |
| LSRCP GRAND <br> TOTAL |  | $\mathbf{5 8 , 6 3 2 , 2 6 6}$ | $\mathbf{I}$ | $\mathbf{5 6 . 9 \%}$ | $\mathbf{2 9 9 , 2 0 3}$ | $\mathbf{0 . 5 1 0 \%}$ | $\mathbf{3 6 5 , 1 3 2}$ | $\mathbf{0 . 6 2 3 \%}$ |

Appendix E. Percentage of smolt release goals met at PFH and RRFH from 1991 through 2011.


199119921993199419951996199719981999200020012002200320042005200620072008200920102011 Brood Year

Appendix F. Percentage of Chinook smolt release goals met at Lower Snake River Compensation Hatcheries in Idaho.


## Prepared by:

Matthew J. Belnap
Fisheries Biologist
Idaho Department of Fish and Game

Forrest Bohlen
Data Management Specialist Idaho Department of Fish and Game

Corey Dondero
Fisheries Technician
Idaho Department of Fish and Game

## Approved by:

James A. Chandler
Fisheries Program Supervisor
Idaho Power Company

Lance Hebdon
Anadromous Fisheries Manager Idaho Department of Fish and Game

James P. Fredericks, Chief
Bureau of Fisheries
Idaho Department of Fish and Game

Riley Brown
Science Technician
Idaho Power Company

