Improving abundance estimates for Snake River spring/summer Chinook Salmon

Objective: Highlight technologies that are advancing our ability to manage Chinook Salmon

- Parentage based tagging
- Run reconstruction
- Harvest monitoring
- Integrated program management
- Stray and PIT monitoring enhancements
- Broodstock composition and trait heritability
- Evaluation of unmarked releases

Background: The M&E Toolbox

Dam Counts

Abundance

Age composition

Run timing

External Marking
Origin (hatchery/natural)

CWT's

Age, stock, release site
Origin (hatchery/natural)
Abundance
Stray detection

PIT Tags

Age, stock, release site

Juvenile survival

Stock-specific run timing

Travel time

Abundance

Conversion rates

Stray detection

Fallback/re-ascension rates

The M&E Toolbox - Parentage based tagging

Age, stock, release site
Origin (Hatchery/Natural)
Abundance
Stray detection
pHOS/pNOB/PNI

The M&E Toolbox - Parentage based tagging

Age, stock, release site
Origin (Hatchery/Natural)
Abundance
Stray detection
pHOS/pNOB/PNI

Bonneville and Lower Granite Dam

Fisheries

Hatchery weirs/traps

Spawning grounds

Parentage based tagging background

- Parentage-based tagging implemented in Snake R Basin in 2008
 - First sampling of adult returns in 2012
- All hatchery fish are "tagged" by genotyping parents at the time of spawning
- Cost-effective means to achieve high tagging rate
 - Typically > 95% tag rate
- Increased recovery of "tagged" fish
- PBT program reviewed by ISRP in 2021
 - Project # 2010-031-00

Run Reconstruction

• LSRCP project area escapement goals measured at Lower Granite Dam

Run Reconstruction

- LSRCP project area escapement goals measured at Lower Granite Dam
- Traditional = Harvest + Hatchery Returns + Spawning Ground Escapement

Run Reconstruction

- LSRCP project area escapement goals measured at Lower Granite Dam
- Traditional = Harvest + Hatchery Returns + Spawning Ground Escapement
- PBT allows direct estimates to be made at Lower Granite Dam

Run Reconstruction: Escapement at LGR using PBT

- Lower Granite Dam adult trap is operated 5 days/week throughout the adult migration
- Fin tissue is collected from all unclipped Chinook that are trapped (~ 20% sample rate)
- Fin tissue is collected from a subsample of the <u>clipped</u> hatchery fish trapped (2-8% sample rate)
- DNA is extracted from fin tissue for PBT/GSI analysis

Advantages of using PBT for estimating abundance at LGR

- High tagging rates
- Non-lethal tag recovery
- No tag loss or differential mortality
- Ability to estimate abundance of groups with few/no PIT tags
 - Parr releases, integrated programs, egg box programs
- Not subject to the potential biases associated with traditional run reconstruction (harvest estimates, carcass recovery)
- Accounts for the escapement and mortality that is not accounted for in traditional run reconstruction

Current limitations of using PBT for estimating abundance at LGR

- Lacks precision for small populations (<500 individuals)
 - Most of the NE Oregon programs

- Longer reporting/identification time as samples are processed
- Potential impacts from trap shutdowns (mechanical, global pandemics)

Comparing Abundance Estimates - Hatchery

- Coykendall et al. 2022 compared stock/age based estimates @ Lower Granite Dam using PIT tags and PBT
- PIT tag estimates are lower than PBT-based estimates
 - Tag loss and differential mortality

Comparing Abundance Estimates - Hatchery

- Coykendall et al. 2022 compared stock/age based estimates @ Lower Granite Dam using PIT tags and PBT
- PIT tag estimates are lower than PBT-based estimates
 - Consistent pattern through time

Comparing Abundance Estimates - Natural

- Genetic-informed corrections for undetected unclipped hatchery fish at Lower Granite Dam
 - Tag loss
 - CWT scanning error
 - Mis-clipped hatchery fish
 - Fish released with no mark/tag

Harvest Monitoring – stock composition

- Evaluation of stock composition in mixed-stock fisheries
 - Clearwater River basin (NPTH, Clearwater, Dworshak, Kooskia hatcheries)
 - Lower Salmon River (Rapid River, McCall, Pahsimeroi, Sawtooth)
- High PBT tagging rates result in robust sample numbers over CWT
- Increased harvest monitoring program efficiency

Harvest Monitoring – stock composition

- Evaluation of stock composition in mixed-stock fisheries
 - Clearwater River basin (NPTH, Clearwater, Dworshak, Kooskia hatcheries)
 - Lower Salmon River (Rapid River, McCall, Pahsimeroi, Sawtooth)
- High PBT tagging rates result in robust sample numbers over CWT
- Increased harvest monitoring program efficiency

Harvest Monitoring – stock composition

- Evaluation of stock composition in mixed-stock fisheries
 - Clearwater River basin (NPTH, Clearwater, Dworshak, Kooskia hatcheries)
 - Lower Salmon River (Rapid River, McCall, Pahsimeroi, Sawtooth)
- High PBT tagging rates result in robust sample numbers over CWT
- Increased harvest monitoring program efficiency
- In-season harvest share adjustments

Harvest Monitoring – in-season management

- Mid-season processing of genetic samples collected at Lower Granite
- Allows us to "correct" PIT tag expansion rates in real-time for some stocks
 - Clearwater Basin
 - Lower Salmon/Little Salmon rivers
- Results in increased harvest and fishery duration in some years

Harvest Monitoring – in-season management

	PIT-	PBT-		
	based	based	Harvest	
	Harvest	Harvest	Share	
Year	Share	Share	Difference	Fishery Management Changes
2017	1,231	2,173	942	4 additional weeks on Little Salmon River
				2 additional weeks on Lower Salmon R, 4 additional
2018	537	1,374	837	weeks on Little Salmon R
				1 additional week on Lower Salmon R, 2 additional
2021	1,158	1,767	609	weeks on Little Salmon R

Integrated Chinook Programs

- Combination of marks and tags used for in-season weir management
 - Segregated Adipose clip
 - Integrated No clip, 100% CWT
 - Natural No clip, no tag
- PBT used to estimate productivity of the natural and hatchery populations spawning naturally

Integrated Chinook Programs

- Improved accuracy of above-weir PNI estimates using PBT
 - Shed CWT's, mis-clipped adipose fins, and CWT scanning errors

- CWT's
 - Fisheries, hatchery rack, spawning ground surveys
- PIT tags
 - Increased in-stream PIT arrays

- CWT's
 - Fisheries, hatchery rack, spawning ground surveys
- PIT tags
 - Increased in-stream PIT arrays

- CWT's
 - Fisheries, hatchery rack, spawning ground surveys
- PIT tags
 - Increased in-stream PIT arrays

- CWT's
 - Fisheries, hatchery rack, spawning ground surveys
- PIT tags
 - Increased in-stream PIT arrays

- PBT
 - 10,000+ adults sampled annually for broodstock

- Tool developed by the Nez Perce Tribe
- Data from PTAGIS
- R Shiny App

Broodstock evaluations

- Trait heritability
- Stock/age composition
- Stray detection

Evaluation of unmarked releases

- PBT enables previously unmarked releases to be evaluated
 - Egg outplants
 - Parr/presmolt releases

Photo credit: Nez Perce Tribe

Photo credit: Nez Perce Tribe

Evaluation of unmarked releases

- PBT enables previously unmarked releases to be evaluated
 - Egg outplants
 - Parr/presmolt releases
 - Contributions from adult outplants

Photo credit: Nez Perce Tribe

Photo credit: Nez Perce Tribe

Photo credit: Nez Perce Tribe

Looking ahead...

- Single parent and grandparent analysis
 - Improved ability to estimate pHOS
- Expansion of PBT region-wide
 - Ocean and non-tribal fishery below Bonneville Dam

Improving sampling program at Bonneville Dam AFF

Acknowledgements

- Hatchery staffs the other marking crew
- Eagle and CRITFC genetics labs
- Harvest monitoring staff
- IDFG and NPT M&E staff
- Marking crews
- Funders (LSRCP, Idaho Power Company, BPA)

Questions?