CTUIR Visioning for LSRCP Next 10 Years

LSRCP CHINOOK SYMPOSIUM 12-15-22

GARY JAMES
CTUIR FISHERIES
PROGRAM MANAGER

Brief Background of CTUIR Involvement in LSRCP

- Gary James, first CTUIR biologist hired in August 1982
- Lookingglass Hatchery dedication in 1982 attended by CTUIR
- CTUIR began receiving LSRCP funds in 1989
- CTUIR sponsored BPA-funded Upper GRR and Catherine Creek satellite facilities to facilitate in-place in-kind mitigation (1997-2000)
- CTUIR conducts O&M and M&E of satellite facilities and M&E of CHS supplementation in Lookingglass Creek

CTUIR Involvement With Hatchery Intervention

1. Reintroduction Following Extirpation

Salmonids: Umatilla CHS, CHF, & coho; Walla Walla CHS; STS above McKay Dam

Other Species: Pacific lamprey and freshwater mussel programs

ongoing with research at WWCC

2. Supplementation of Depressed Populations

CHS: Grande Ronde, Imnaha & Tucannon

CHF: Grande Ronde, mainstem Snake and

Columbia River

STS: Umatilla

Note: Gravel-to-gravel satellite facility approach

Why Hatcheries? What has happened to Columbia Basin habitat?

- Over 1,000 dams have been constructed since the late 1800's.
- There are 13 mainstem Columbia and Snake River dams.
- Only 55% of once-available habitat is still accessible today.

- About 65% of remaining accessible mainstem Columbia and Snake River habitat has been transformed to reservoirs/pools.
- Common tributary limiting factor due to economic development is stream channelization and poor water quantity/quality and lack of natural floodplain function.

Why Hatcheries? What has happened to Columbia Basin Salmon and Steelhead?

- Spawning populations are often below replacement
- 23 populations have become extinct
- 199 populations are ESA-listed as threatened or endangered
- Jay Hesse, NPT: 42% of nat-origin Snake CHS populations are at or below QET (50 fish); 77% predicted by 2025
- Once productive CTUIR U&A fishing areas in NE Oregon/SE
 WA are often closed or have very limited harvest opportunity

Snake River Spring Chinook Goals (LSRRCP Hatchery and CBPTF Natural)

LSRCP - Snake River Hatchery CHS Status and Goals

Location	LSRCP Goal	Recent Status	% of Goal
Upper Grande Ronde	1,617	1,106	68%
Catherine Creek	970	658	68%
Snake River	58,700	44,071	75%

CBPTF - Snake River Natural-Origin CHS Status and Goals

Location	CBPTF Med Goal	Recent Status	% of Goal
Upper Grande Ronde	2,500	70	3%
Catherine Creek	1,875	190	10%
Snake River	98,000	7,000	7%

Spring Chinook Salmon
Snake River Population Response Due to 50% Reduction in Mortality Factors

^{*}Assumes removal of Snake River dams and 50% survival improvement for Columbia River Dams

Trajectory of Fish Recovery Programs

Recovery Time

Grande Ronde River State Ditch construction cut off 45 stream miles

Mouth of Walla Walla River – loss of meanders due to channelization

Grande Ronde Degraded Habitat Impacting CHS Juvenile Survival

- Pre-spawning mortality of adults passed above upp GRR weir is ~70%
- Loss of Catherine Cr & Upp GRR juvenile outmigrants through Grande Ronde Valley is 70-90% (Lookingglass Creek survive much better)

The same pattern is observed for the Upper Grande Ronde stock

Population and Habitat Enhancement Both Needed to Restore Native Aquatic Species

1. Floodplain Habitat Enhancement - Physical

- CTUIR First Foods River
 Vision Mission
- Must address ecological function and floodplain health

2. Population Enhancement - Biological

- Rebuilding may result from habitat improvements
- However, artificial propagation/supplementation is necessary when life cycle mortalities don't allow for natural rebuilding
- Hatchery intervention also likely necessary for providing harvest mitigation prior to rebuilding of natural production

HATCHERY BENEFIT VS. RISK (RECOVERY TOOL OR IMPACT?)

Benefits:

- Demographic boost to natural spawning population (90% vs 10%)
- Avoid extirpation, ESA listing or possibly delist
- Reestablish fisheries in traditional locations; treaty trust responsibilities

Risk of using tool:

- Reduced genetic diversity
- Ecological impacts (disease and competition)
- Reduced productivity (RRS & RS)

Risk of not using tool:

- Continue deficit returns
- Continue low natural production
- Continue low/no harvest

Seek benefits of using hatchery tool while minimizing risks to wild fish

Lookingglass Creek Relative Reproductive Success

Nuetzel et. Al. Improved productivity of naturalized spring Chinook salmon following reintroduction from a hatchery stock in Lookingglass Creek, Oregon (in-press), Canadian Journal of Fisheries and Aquatic Sciences.

This study demonstrates the naturalization of hatchery origin Chinook after spawning in nature.

Efforts to Review and Improve Hatcheries Over Last 30 Yrs

- 1990-1992: Regional Assessment of Supplementation
- 1992-1995: Integrated Hatchery Operations (IHOT)
- 1997-1999: Artificial Production Review (APR)
- 2001: Performance Standards and Indicators (PSI)
- 2002-2005: Artificial Production Review and Evaluation (APRE) and Hatchery and Genetics Management Plan (HGMP)
- 2003-2005: ISAB Review of Salmon & Steelhead Supplementation
- 2006-2007: Ad Hoc Supplementation M&E Workshops
- 2005-2015: Hatchery Scientific Review Group (HSRG)

Recommendations/Considerations Moving Forward

Apply regional hatchery science but also respond to site/program specific fish survival needs:

- 1. Expedite increased fish survival across all life stages
 - CBPTF → Columbia Basin Collaborative (CBC)
 - More aggressive all-H efforts to achieve CBPTF goals
- 2. Revisit LSRCP Goals
 - Adjust for increased or under-acknowledged habitat mortalities
 - More in sync with CBPTF goals?
 - More integration for supplementation of natural production
- 3. Improved Infrastructure and Technologies
 - Capital facility upgrades
 - Improved operations and fish survival

Applying New Technologies at Hatcheries

1. Circular Raceways

- Improved fish fitness (continuous exercising)
- Fish evenly more distributed (reduces densities)
- Circular motion produces self-cleaning effect

2. Other Recent Technologies

- Recirculating Aquaculture System (RAS) water conservation
- Improved Ultra-Violate light water treatment systems
- Improved monitoring and SCADA systems (Supervisory Control and Data Acquisition)
- Use of barge array at Walla Walla River mouth to monitor smolt outmigration

Recommendations Moving Forward (continued)

4. Increased Hatchery Production

- New or expanded or substituted production
- Increased broodstock holding and juvenile rearing = increased or more flexible use of space
- Additional production for blocked areas

5. Address Adult Mortality

- Less handling at weirs to increase survival of passed fish or
- Hold more fish in hatchery prior to release for spawning

6. Expedite floodplain restoration

- More attention to key habitat fish mortality factors
- Implement near term priorities and plan long term needs (eg. GR Valley restoration; Vey Meadows)

Defining Hatchery Program Success

 For Tribes, maintaining or <u>increasing harvest opportunities</u> in all usual and accustomed treaty fishing areas.

- Increasing spawners and <u>rebuilding natural</u> <u>production</u> to counter the effects of habitat impacts.
- Accomplish above using "best hatchery management technologies and practices".
- Improve fish survival at all life stages (multiple H programs)
- Lack of success = continued population declines, inability to effectively use the hatchery tool, inability to delist, more extinctions and limited ability to exercise treaty fishing right.

