Infrastructure and Operations Audit of Sawtooth Fish Hatchery 2022

Sawtooth Fish Hatchery Lower Snake River Compensation Plan

Tony Folsom *Idaho Department of Fish and Game*

Chris Starr U.S. Fish and Wildlife Service

Contacts

Sawtooth Fish Hatchery Idaho Department of Fish and Game

Tony Folsom and Sylvia Hamilton Hatchery Manager and Assistant Hatchery Manager State Hwy 75 Stanley, ID 83278 Phone: 208-774-3684 E-mail: tony.folsom@idfg.idaho.gov & sylvia.hamilton@idfg.idaho.gov

Idaho Department of Fish and Game

Bob Becker Complex Manager 300 Mather Rd McCall, ID 83638 Phone: 208-899-0845 E-mail: <u>bob.becker@idfg.idaho.gov</u>

Idaho Department of Fish and Game

Cassie Sundquist Production Program Coordinator 600 S Walnut Boise, ID 83707 Phone: 208-287-2780 E-mail: <u>cassie.sundquist@idfg.idaho.gov</u>

U.S. Fish and Wildlife Service

Chris Starr Facility Coordinator Lower Snake River Compensation Plan Office 1387 S Vinnell Way, Suite 343 Boise, ID 83709 Phone: 208-514-5644 E-mail: <u>chris_starr@fws.gov</u>

U.S. Fish and Wildlife Service

Nathan Wiese Program Coordinator Lower Snake River Compensation Plan Office 1387 S Vinnell Way, Suite 343 Boise, ID 83709

Executive Summary

On August 26, 2022, Chris Starr, Facilities Coordinator, Nathan Wiese, Program Coordinator LSRCP, Tony Folsom, Hatchery Manager, Bob Becker, Salmon River Complex Manger, conducted a high-level one-day infrastructure and operations assessment of the Sawtooth Fish Hatchery. Cassie Sundquist, Beau Gunter, Chris Sullivan, and John Cassinelli, IDFG, provided review of this document.

The purpose of this document is to provide the Lower Snake River Compensation Plan (LSRCP) and other stakeholders ample conceptual-level information of the current infrastructure challenges. The goal is to incorporate audit findings into a 10-year strategic plan for LSRCP that will maximize in-house and external improvement opportunities by developing solutions that fit resources, budgets, and supportive programs in a logical sequence. These efforts are intended to significantly improve water quality, program capacity, efficiency, and flexibility at the facility and ultimately increase opportunities for LSRCP to meet adult mitigation targets.

The LSRCP plans to assess all spring/summer Chinook rearing facilities within the program prior to the 10-year spring/summer Chinook Program Review for the Independent Scientific Review Panel (ISRP) in December 2022. With this review, the LSRCP intends to identify strategies toward improving performance of achieving project area goals of 58,700 spring/summer Chinook salmon adult returns. From 2004-2017, the LSRCP averaged 29,115 spring/summer Chinook salmon adult returns and failed to achieve the project area goal on any year during the period.

The following actions are suggested to maximize smolt production at the Sawtooth Fish Hatchery:

Program	Current Smolts	Proposed Smolts
Integrated/Segregated	2,000,000	2,400,000 – Maximize all raceways. Increase YFK release, backfill Integrated raceways with segregated. Complete well rehabilitation.
Integrated/Segregated	0	120,000 – Rebuild two early Rearing Vats

Table of Contents

1	Scope			5
2	Васко	round	10	6
	2.1 B	310log1	cal Opinion	8
	2.2 11	nfrastru	ucture	10
	2	.2.1	Hatchery Water Supply	10
	2	.2.2	Broodstock Collection	10
	2	.2.3	Incubation	11
	2	.2.4	Nursery Rearing	11
	2		Outdoor Rearing	12
	2	.2.6	Release	12
_	2	.2.7	IPDES	13
3	Operat	tions		13
	3	.1.1	Marking	13
	3	.1.2	PIT Tagging	13
4	Operat	tional/	Infrastructure Changes for Program Efficiency	13
	4	.1.1	Add 20 Incubation Stacks	14
	4	.1.2	Add two additional incubation vats	14
	4	.1.3	Rehabilitate Existing Wells	15
	4	.1.4	Maximize Existing Infrastructure	16
	4	.1.5	Summary	16
5	Appen	dix A.	Monthly Production Strategy–Sawtooth Fish Hatchery	18
	5	.1.1	January	18
	5	.1.2	February	19
	5	.1.3	March	20
	5	.1.4	April	21
	5	.1.5	May	22
	5	.1.6	June	23
	5	.1.7	July	24
	5	.1.8	August	25
	5	.1.9	September	26
	5	.1.10	October	27
	5	.1.11	November	28
	5	.1.12	December	29
	5	.1.13	January Year 2	30
	5	.1.14	February Year 2	31
	5	.1.15	March Year 2	32
	5	.1.16	April Year 2	33
6	Appen	dix B.	Water Quality Parameters	34
7	Appen	dix C.	General Marking Schedule	35
8	Appen	dix D.	Options Discussed	36
	8	.1.1	Reduce Fish Size to 20 fish per pound and total Hatchery to 2.8M	36
	8	.1.2	Construct New Rearing Ponds	36
	8	.1.3	Retrofit One Off-line Settling Basin for Acclimation	37

1 Scope

On August 26, 2022, Chris Starr, Facilities Coordinator, Nathan Wiese, Program Coordinator LSRCP, Tony Folsom, Hatchery Manager, and Bob Becker, Salmon River Complex Manger, conducted a high-level one-day infrastructure and operations assessment of the Sawtooth Fish Hatchery.

The purpose of this document is to provide the Lower Snake River Compensation Plan (LSRCP) and other stakeholders ample conceptual-level information of the current infrastructure challenges. The goal is to incorporate audit findings into a 10-year strategic plan for LSRCP that will maximize in-house and external improvement opportunities by developing solutions that fit resources, budgets, and supportive programs in a logical sequence. These efforts are intended to significantly improve water quality, program capacity, efficiency, and flexibility at the facility and ultimately increase opportunities for LSRCP to meet adult mitigation targets.

This audit is a kick-off effort to assess all spring/summer Chinook rearing facilities within the LSRCP program prior to the 10-year spring/summer Chinook Program Review for the Independent Scientific Review Panel (ISRP) in December 2022. With this review, the LSRCP intends to identify strategies toward improving performance of achieving project area goals of 58,700 spring/summer Chinook salmon adult returns. From 2004-2017, the LSRCP averaged 29,115 spring/summer Chinook salmon adult returns and failed to achieve the project area goal on any year during the period.

2 Background

The Sawtooth Hatchery (Hatchery) is located near the headwaters of the Salmon River, approximately 400 river miles upstream from the mouth of the Salmon River. The facility collects spring Chinook, Sockeye and steelhead at the weir location.

The purpose of the Sawtooth spring Chinook salmon hatchery program is to mitigate for fish losses caused by the construction and operation of the four lower Snake River federal dams under the Lower Snake River Compensation Plan (LSRCP). This program, located at the Sawtooth Fish Hatchery, also includes a conservation component that is intended to increase the abundance of naturally spawning fish through an integrated supplementation effort. By integrating the hatchery broodstock, managers are attempting to let the natural environment drive selection in the hatchery population and therefore reduce risks associated with hatchery-origin fish spawning naturally.

The integration strategy provides demographic and genetic benefits by: 1) increasing the abundance of fish spawning naturally, 2) increasing the extent of available spawning habitat that is utilized, and 3) providing a genetic repository for natural fish in the hatchery environment. This strategy will be particularly advantageous during years of very low natural-origin abundance (HGMP 2011).

Sawtooth's mitigation goal is 19,445 adult spring Chinook salmon to stream reaches upstream of Lower Granite Dam. To meet the mitigation goals, the Hatchery rears up to 2.0 million spring Chinook yearling smolts. Of these releases, 1.7M (1.45M Segregated and 250K Integrated) are released into the Upper Salmon River at the Sawtooth Fish Hatchery. Additionally, this program rears approximately 300,000 smolts for release into the Yankee Fork of the Salmon River as part of a Shoshone Bannock supplementation program.

This mitigation program has never achieved the escapement goal of 19,445 adults to the project area since the inception of the program in 1985. Based on brood years 1992-2018 mean SAR (0.33%) to Lower Granite dam, the production capacity at this facility needs to be increased from 2.0 million to 5.8 million yearling smolts to return 19,445 adults to the project area.

Sawtooth Fish Hatchery

Tisti Hatenery	
Brood Year	SAR
1992	0.03%
1993	0.04%
1995	0.71%
1996	0.51%
1997	1.09%
2000	0.42%
2001	0.16%
2002	0.11%
2003	0.16%
2004	0.42%
2005	0.69%
2006	0.68%
2007	0.23%
2008	0.63%
2009	0.13%
2010	0.38%
2011	0.40%
2012	0.31%
2013	0.16%
2014	0.18%
2015	0.06%
2016	0.08%
2017	0.13%
2018	0.16%
Average	0.33%

Smolt to Adult Survival, Sawtooth Fish Hatchery

2.1 Biological Opinion

Sawtooth Fish Hatchery is permitted (BIOP 2017) for up to 2.0 M spring Chinook smolt releases onsite. An additional 600,000 smolts are permitted for the Yankee Fork and 400,000 smolts for Panther Creek from Crystal Springs (Table 7 – BIOP 2017). Yankee Fork Chinook smolts are intended to be trapped at Yankee Fork or backfilled with Sawtooth stock. Panther Creek smolts are intended to be trapped at Panther Creek or backfilled with Pahsimeroi stock. Discussions with NOAA personnel (Brett Farman, pers comm) indicate that changing rearing locations for these smolts until Crystal Springs rearing comes to fruition can be accomplished under the existing BIOP.

Program	Annual release groups (number and life stage)	Marking ⁴	Egg incubation/Re aring Location	Acclimation	Release Time
Sawtooth Segregated	1.85 Million Smolt ¹	100% Ad-clip, representative CWT (see Table 8)	Sawtooth	On-site	Late March- mid-April
Sawtooth Integrated	150,000 Smolts ²	100% CWT (see Table 8)	Sawtooth	On-site	Late March- mid-April
Pahsimeroi Integrated	65,000 Smolts	100% CWT, no Ad-clip	Pahsimeroi	On-site	Late March- mid-April
Pahsimeroi Segregated	935,000 Smolt	100% Ad-clip, representative CWT	Pahsimeroi	On-site	Late March- mid-April
Yankee	600,000 Smolt	Ad-clip and CWT TBD	Crystal Springs	Yankee Fork acclimation ponds	Late March -April
Fork	Up to 1,500 Adults ³ for natural spawning	TBD	N/A	N/A	June - September
Panther	400,000 Smolt	Ad-clip and CWT TBD	Crystal Springs	Acclimated Release, Panther Creek Satellite Facility	Late March - April
Creek	800,000 Eggs	Parental-based Tagging ⁴	Pahsimeroi then Panther Creek eggbox	Panther Creek Egg Box	October - November

Table 7. Summary of Annual release groups (number and life stage), marking, egg incubation and rearing locations, acclimation, and release times at full production.

¹This includes Yankee Fork production (300K)

² Integrated program may be increased, concomitant with decreases in segregated program (total production rema 2M) ³ Numbers will depend on the number of adults available that are not needed for production for the Sawtooth

⁴ All release groups are part of a parental-based tagging (PBT) strategy and will and include some level of PIT tagging to represent the groups.

2.2 Infrastructure

2.2.1 Hatchery Water Supply

The Sawtooth Fish Hatchery receives water from the Salmon River and from five wells. River water enters an intake structure located approximately 0.8 km upstream of the hatchery facility. River water flows from the collection site to a control box located in the hatchery building where it is screened to remove fine debris. River water can be distributed to indoor vats, outside raceways, or adult holding raceways. River water temperatures range from 32 F in the winter to 70 F in the summer. The hatchery water right for river water use is variable throughout the year.

#	Description	January	February	March	April	May	June	July	August	Septembe	October	Novembe	December
71-07079	Main Intake	35	35	35	35	15	28	20	20	20	15	35	35
71-2088	Original Water Right	0	0	0	0	25	25	25	25	25	25	0	0
	TOTAL CFS	35	35	35	35	40	53	45	45	45	40	35	35

Incubation and early rearing water needs are met by 5 primary wells (1, 1A, 5, 6 and 7). Well water temperatures range from 40 F in the winter to 52 F in the summer. The hatchery water right for well use is variable throughout the year.

#	Description	January	February	March	April	May	June	July	August	Septembe	October	Novembe	December
71-10934	Wells 1, 1A, 6 and 7	9.1	9.1	9.1	9.1	5.8	5.8	5.8	5.8	5.8	9.1	9.1	9.1
71-10934	Well 5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	TOTAL CFS	11.6	11.6	11.6	11.6	8.3	8.3	8.3	8.3	8.3	11.6	11.6	11.6

A sixth well (Well #3) provides tempering water to control the build-up of ice on the river water intake during winter months.

The seventh well (Well #4) provides domestic water for the facility.

2.2.2 Broodstock Collection

Depending on spring runoff conditions, ladder and trap operations will begin between mid-May and mid-June and continue through early-September. Generally, the weir can be fully placed into operation as a descending Salmon River USGS hydrograph located near the mouth of the Yankee Fork Salmon River discharge reading approaches 2,400 cfs.

The hatchery has three 167 ft long x 16 ft wide x 5 ft deep holding raceways and an enclosed spawning building. Each raceway has the capacity to hold approximately 1,300 adults.

The adult trap is worked up daily and all fish are measured for fork length and examined for marks, gender, injuries, and either placed into one of three adult holding ponds or released directly into the Salmon River above the hatchery intake, depending upon what mark or tag the fish may have. Unmarked Chinook not needed for Integrated broodstock are released above the hatchery intake after daily trap operations have ended.

2.2.3 Incubation

Eggs are rinsed with pathogen-free well water after fertilization, and disinfected with a 100 ppm buffered iodophor solution for -one hour before being placed in incubation trays.

Incubation facilities at the Sawtooth Fish Hatchery consist of a well water-supplied system of 80 stacks of incubator frames containing 640 incubation trays. The maximum incubation capacity at the Sawtooth Fish Hatchery is 2,688,000 million green Chinook eggs with single-trayed females.

Incubation flows are set at 5 per eight tray incubation stack. The minimum flow required for incubation is 400 gpm for 80 stacks. Typically, eggs from one female are incubated per tray (approximately 4200eggs).

2.2.4 Nursery Rearing

Eggs are typically held in incubation trays at the Sawtooth Fish Hatchery until they reach the swim-up stage of development, at approximately 2,000 FTUs. Ponding and rearing plans are generally developed to accommodate segregation groups (based on female ELISA optical density values) and whether juveniles are destined for supplementation or production (mitigation) releases.

At swim-up Chinook fry are transferred into 14 indoor vats, 1 display vat and 6 small outside raceways with screens initially placed at half length. Approximately 65,000 fry are set out in each vat. The remaining Chinook fry are transferred evenly, up to 180,000 per raceway, into one of six outside small raceways supplied with well water. Flows are set at 50 gpm for vats, 180 gpm for small raceways to start, then increased as needed to keep flow indices under recommended levels.

Fry are ponded directly into inside rearing vats. Vats are baffled to provide compartmentalized rearing space and to assist with cleaning. In addition, vats are covered to provide some degree of privacy from human activity and building lights. Starting flows are set at 50 gpm and increased to a maximum of 120 gpm per vat. Density indices are maintained to not exceed 0.3. Flow indices are maintained to not exceed the recommendations listed in Piper dependent on elevation and water temperatures (Piper et al. 1982). Fish are targeted to be reared to approximately 130 fish per pound in vats before being transferred to outside rearing raceways at marking.

Rearing capacity of the Hatchery is limited by the quantity of pathogen free well water available during early rearing (USFWS 2011) and river water must be used at times to complete early rearing in the six small outside raceways.

IDFG Fish Health recommends not introducing river water to the small raceways until the fish have reached 900 CTU's from hatch to reduce the risk of Whirling Disease exposure.

2.2.5 Outdoor Rearing

Outside rearing consists of 14 production raceways each with 6,120 cubic ft of rearing space. Each production raceway has a capacity to raise 180,000 Chinook to smolt stage for a total design capacity of 2.52 million fish.

Production raceways are provided with between 830 to 1,120 gpm of river water depending on the time of year for a maximum water usage of 35 cfs. Summer water temperatures commonly reach 65°F+. Hatchery staff mitigate these extreme temperatures by feeding/cleaning early in the morning. Dissolved oxygen levels have been recorded as low as 5.0 ppm during the summer months.

Density indices are maintained to not exceed 0.3. Flow indices are maintained to not exceed the recommendations listed in Piper dependent on elevation and water temperatures (Piper et al. 1982).

Fish Per Pound	% body Wt/Day	Period
Swim-up to 800	3.5%	Nov-Jan
800-500	3.3%	Jan-Feb
500-400	2.5%	Feb-Mar
400-350	2.5%	Mar-Apr
350-300	2.3%	April
300-250	2.2%	May-Jun
250-150	2.4%	June
150-110	2.4%	June-July
110-90	2.5%	July-Aug
90-50	2.2%	Aug-Sep
50-17	2.0	Sep-Oct
17-relese	Maintenance	Oct-Release (April)

Sawtooth Fish Hatchery Feeding Rates (HGMP 2011)

2.2.6 Release

Target release size is 18 fpp for 2M smolts (AOP 2022).

A variety of transportation vehicles and equipment are available at the various facilities. Generally, adult transportation at both facilities is unnecessary as hatchery-produced adults are trapped and spawned on site. Disinfection protocols are in place for equipment, trucks and nets. All raceways are thoroughly chlorinated after fish have been transferred for release.

Transportation for upper Yankee Fork Salmon River supplementation production follows Integrated Hatchery Operations Teams (IHOT) transportation guidelines. Niel Ring Trucking is typically contracted to transport the Yankee Fork smolts.

2.2.7 IPDES

The Hatchery has two Off-line Settling Ponds and one Full-Flow Settling Pond for wastewater treatment. Idaho Pollution Discharge Elimination System (IPDES) permit requirements have been met in recent rearing cycles.

The Off-line Settling Ponds are approximately 80ft x 235ft.

The Full-Flow Settling Pond is divided into three cells for a combined volume of 515,440 cubic feet. It measures 2.34 acres in area and has a minimum detention time of 3.18 hours when approximately 30 cfs is entering the pond. The settling pond will filter all of the effluent water (35 cfs).

3 Operations

3.1.1 Marking

Approximately 490,000 smolts are coded-wire tagged annually along with adipose clipping the first week of June. Fish Marking currently takes 10 days to mark 2.0M Chinook (Appendix B).

3.1.2 PIT Tagging

30,000 Chinook smolts are PIT tagged annually the first week of October for Comparative Smolt Survival studies and LSRCP evaluation.

4 Operational/Infrastructure Changes for Program Efficiency

4.1.1 Add 20 Incubation Stacks

The "E" bank of incubation stacks were removed in the mid-2000s for use at the Pahsimeroi Hatchery for the Upper Salmon B-Steelhead program. The current incubation capacity could be increased from 2,688,000 single-female trayed green eggs to 3,360,000 eggs with the addition of the 20 "E" bank incubators at an average fecundity of 4,200. Although additional stacks are not needed to increase to 2.4M smolts, the additional stacks could provide additional green to eyed incubation space flexibility for both the Chinook and steelhead programs.

4.1.2 Add two additional incubation vats

To accommodate sockeye production, two rearing vats were removed from the early rearing area. Replacement of these vats would provide additional early rearing space for up to 154,000 Chinook fingerlings and will allow staff to reduce densities in the other 14 vats and is needed to increase to 2.4M while maintaining current rearing protocol DI and FI.

This space would increase early rearing vats from 14 to 16 and provide early rearing for 1,232,000 fingerlings to marking (120 fpp). Small raceways would provide early rearing for 1,590,000 fingerlings to marking (120 fpp) for a total of 2,822,000 of early rearing space.

Average survival is 94% meaning early rearing space would be adequate to start enough eggs/fish for smolt releases to 2.65M.

Cost for this project is estimated at \$148,000.

4.1.3 Rehabilitate Existing Wells

Existing wells are used for incubation, de-icing, early vat-rearing, small raceways, domestic water, etc. A recent well inventory indicated that well capacity has fallen to 50% of design criteria. Well rehabilitation will improve water capacity for these uses. Well rehabilitation needs completed to maintain current production and rearing parameters.

Cost for this project is estimated at \$470,000.

4.1.4 Maximize Existing Infrastructure

Rearing capacity for outside rearing is 180,000 Chinook smolts to 18 fpp. However, the Yankee Fork (300,000) and Integrated (250,000) rearing components do not fit the rearing capacity and leave significant space under-utilized.

The Yankee Fork program could increase to 360,000 smolts to maximize rearing space.

The Integrated program should remain at 250,000 Chinook smolts (started in small raceway at 265,000 with 94% survival), then marked out to two final rearing raceways, one loaded at 180,000 and one at 70,000 Int. This raceway could be backfilled with an additional 110,000 Segregated smolts. PIT tagging can occur in the 100% Segregated raceway for downstream and adult survival estimates.

Marking an additional 400,000 smolts will add two additional days of marking in May for a total of 12 days. The Marking Crew has concerns about their ability to accommodate two additional days of marking at Sawtooth due to the increased workload, 12-day stint for staff, increased production at other hatcheries and inability to hire adequate numbers of staff.

Annual operation costs for 400,000 smolts are \$0.09 each for fish feed and \$0.09 each for supplies, marking/tagging, fish health, etc.

Cost for implementation is \$72,000.

4.1.5 Summary

Sawtooth staff can rear an additional 400,000 smolts as soon as BY2023 depending on stock availability and release location. Preference is to rear Pahsimeroi stock for Panther Creek releases and secondary Sawtooth stock depending on availability. LSRCP acknowledges some additional fish health risk with movement to river water earlier and more fish onsite during the summer months.

Harvest shares cannot be adjusted this year as it's too late in the season setting process for changes. Assuming agreement on a path forward, public input meetings would be needed this spring/summer for the BY24 collection season.

LSRCP is very interested in the additional 400K smolts, implementing well upgrades (\$550K), and the two early rearing vats (up to \$200K) to provide a possible additional 120K early rearing capacity and 2.52M smolt total. However, to add infrastructure and annual operating costs, LSRCP will need some commitment to future brood collection and more discussion on returns vs. brood - i.e low returns to the Upper Salmon.

Maximize Production at Sawtooth Fish Hatchery

Program	Current Smolts	Proposed Smolts
Integrated/Segregated	2,000,000	2,400,000 – Maximize all raceways. Increase YFK release, backfill Integrated raceways with segregated. Complete well rehabilitation.
Integrated/Segregated	0	120,000 – Rebuild two early Rearing Vats

5 Appendix A. Monthly Production Strategy–Sawtooth Fish Hatchery

5.1.1 January

	Vat Flow	Rate	50							Flow Rate	180					
	Vat Volur	ne	210			Max FI @ 44	°F = 1.87			Volume	702					
	DV Flow F	Rate	50							Fish Length	1.66					
	DV Volun	ne	64			Total CFS	4.08			Ending Fpp	614					
	Fish Leng	th	1.66													
	Ending Fp	р	614													
	Vats	5								Smalls						
					Wt	DI	FI							Wt	DI	FI
14	YF			73037	119	0.34	1.43		1			25950	9	423	0.36	1.41
13	YF			73037	119	0.34	1.43		2			25950	9	423	0.36	1.41
12	YF			73037	119	0.34	1.43		3			25950	9	423	0.36	1.41
11	YF			73037	119	0.34	1.43		4		ĺ	25950	9	423	0.36	1.41
10	Seg			62553	102	0.29	1.23		5			25950	9	423	0.36	1.41
9	Seg			62553	102	0.29	1 23		6			25950	9	423	0.36	1 41
				02000	102	0.25	1.20					20000	<u> </u>	120	0.00	1.1.1
8	Seg			62553	102	0.29	1 23									
7	Seg Seg			62553	102	0.29	1 23									
-				02000	102	0.25	1.20		_							
6	Seg			62553	102	0.29	1 23		_			 				
5	Seg			62552	102	0.25	1.25		-							
5	Jeg			02555	102	0.23	1.25		-		72027 125					
	INIT		· · · · · · · · · · · · · · · · · · ·	70402	115	0.22	1 20		_		/303/.135	 				
- 4				70402	115	0.35	1.30		_			 				
3	1111			70402	115	0.55	1.38		_			 				
-	INT			70402	115	0.22	1.20		_			 				
2	INT			70402	115	0.33	1.38		_			 				
1	INI			70402	115	0.33	1.38		_			 				
			Display Vat									 				
		D 14	VE	20.000	40.0500240	0.1.40160.46	0.500674					 				
		DV	YF	30,000	48.8599349	0.14016046	0.588674		_			 				
									_			 				
								Eyed Eggs		Eye to Pond 98%	Release 94%	 				
				3%			YF	328,723		322,149	309,000	 				
				3%			Seg	1,588,830		1,557,053	1,493,500	 				
							INT	287,356		281,609	250,000	 				
							Seg	382,979		375,319	360,000	 				
								2,587,888		2,536,130	2,412,500					

5 1	2	Echruary	,
J . I		i ebiuaiy	

	Vat Flow Rate	50							Flow Rate	200				
	Vat Volume	210			Max FI @ 42	°F = 2.02			Volume	702				
	DV Flow Rate	50							Fish Length	1.99				
	DV Volume	64			Total CFS	4.34			Ending Fpp	356				
	Fish Length	1.99							Mortality	0.0017				
	Ending Fpp	356												
	Mortality	0.0017												
	Vats									Smalls				
				Wt	DI	FI						Wt	DI	FI
14	YF		72913	205	0.49	2.06		1			259068	728	0.52	1.83
13	YF		72913	205	0.49	2.06		2			259068	728	0.52	1.83
12	YF		72913	205	0.49	2.06		3			259068	728	0.52	1.83
11	YF		72913	205	0.49	2.06		4			259068	728	0.52	1.83
10	Seg		62447	175	0.42	1.76		5			259068	728	0.52	1.83
9	Seg		62447	175	0.42	1.76		6			259068	728	0.52	1.83
8	Seg		62447	175	0.42	1.76								
7	Seg		62447	175	0.42	1.76								
6	Seg		62447	175	0.42	1.76								
5	Seg		62447	175	0.42	1.76								
4	INT		70283	197	0.47	1.98								
3	INT		70283	197	0.47	1.98								
2	INT		70283	197	0.47	1.98								
1	INT		70283	197	0.47	1.98								
		Display Vat												
	DV	YF	29,949	84.1264045	0.2013075	0.845492								
							Eyed Eggs		Eye to Pond 98%	Release 94%				
			3%			YF	328,723		322,149	309,000				
			3%			Seg	1,588,830		1,557,053	1,493,500				
						INT	287,356		281,609	250,000				
						Seg	382,979		375,319	360,000				
							2,587,888		2,536,130	2,412,500				

5.1.3 March

	Vat Flow Rate	75							Flow Rate	250				
	Vat Volume	420			Max FI @ 4	1°F = 2.09			Volume	1404				
	DV Flow Rate	50							Fish Length	2.28				
	DV Volume	160			Total CFS	5.85			Ending Fpp	237				
	Fish Length	2.28							Mortality	0.0023				
	Ending Fpp	237												
	Mortality	0.0023												
	Vats								Smalls					
				Wt	DI	FI						Wt	DI	FI
14	YF		72745	307	0.32	1.79		1			258472	1091	0.34	1.91
13	YF		72745	307	0.32	1.79		2			258472	1091	0.34	1.91
12	YF		72745	307	0.32	1.79		3			258472	1091	0.34	1.91
11	YF		72745	307	0.32	1.79		4			258472	1091	0.34	1.91
10	Seg		62303	263	0.27	1.54		5			258472	1091	0.34	1.91
9	Seg		62303	263	0.27	1.54		6			258472	1091	0.34	1.91
8	Seg		62303	263	0.27	1.54								
7	Seg		62303	263	0.27	1.54								
	0													
6	Seg		62303	263	0.27	1.54								
5	Seg		62303	263	0.27	1.54								
						-								
4	INT		70121	296	0.31	1.73								
3	INT		70121	296	0.31	1.73								
			70121	250	0.01	2.70								
2	INT		70121	296	0.31	1 73								
1	INT		70121	296	0.31	1 73								
			70121	250	0.51	1.75								
		Display Vat												
	DV	YF	29880	126	0.13	0.74								
						-								
									Eve to Pond 98%	Release 94%				
			3%			YE	328 723		322 149	309 000				
			3%			Seg	1.588 830		1.557.053	1,493 500				
			570			INT	287 356		281 609	250,000				
						Seg	382.979		375.319	360.000				
							2.587 888		2.536.130	2,412 500				
						1	2,307,000		2,550,150	2,412,550				

5.1.4 April

	Vat Flow Rate	100							Flow Rate	300				
	Vat Volume	420			Max FI @ 40	°F = 2.16			Volume	1404				
	DV Flow Rate	50							Fish Length	2.58				
	DV Volume	160			Total CFS	7.35			Ending Fpp	169				
	Fish Length	2.58							Mortality	0.0024				
	Ending Fpp	169												
	Mortality	0.0024												
	Vats								Smalls					
				Wt	DI	FI						Wt	DI	FI
14	YF		72571	429	0.40	1.66		1			257852	1526	0.42	1.97
13	YF		72571	429	0.40	1.66		2			257852	1526	0.42	1.97
12	YF		72571	429	0.40	1.66		3			257852	1526	0.42	1.97
11	YF		72571	429	0.40	1.66		4			257852	1526	0.42	1.97
10	Seg		62154	368	0.34	1 43		5			257852	1526	0.42	1 97
9	Seg		62154	368	0.34	1 43		6			257852	1526	0.42	1 97
5			02101	500	0.01	1.10					207002	1020	0.12	1.57
8	Sea		62154	368	0.34	1 43								
7	Seg		62154	368	0.34	1 43								
-	005		02101	500	0.01	1.10								
6	Seg		62154	368	0 34	1 43								
5	Seg		62154	368	0.34	1.43								
	368		02134	500	0.54	1.45								
4	INT		69953	A1A	0.38	1.60								
3	INT		69953	414	0.38	1.60								
			05555	717	0.50	1.00								
2	INT		69953	414	0.38	1.60								
1	INT		69953	414	0.38	1.60								
-	1111		05555	414	0.56	1.00								
		Display Vat												
	DV	YF	29808	176	0.16	0.68								
							Eved Eggs		Eve to Pond 98%	Release 94%				
			3%			YF	328,723		. 322,149	309,000				
			3%			Seg	1,588,830		1,557,053	1,493,500				
						INT	287,356		281,609	250,000				
						Seg	382,979		375,319	360,000				
						-	2,587,888		2,536,130	2,412,500				

5.1.5 May

	Vat Flow Rate	120							Flow Rate	400				
	Vat Volume	420			Max FI @ 40	°F = 2.16			Volume	1404				
	DV Flow Rate	50							Fish Length	2.8				
	DV Volume	160			Total CFS	9.36			Ending Fpp	121				
	Fish Length	2.8							Mortality	0.0023				
	Ending Fpp	121												
	Mortality	0.0023												
	Vats								Smalls					
				W/t	Ы	FI						W/t	DI	FI
14	YE		72404	598	0.51	1.78		1			2572	58 2126	0.54	1 90
13	VE		72404	598	0.51	1.78		2			2572	50 2120	0.54	1.90
15			72404	550	0.51	1.70		2			2372.	2120	0.54	1.50
12	VE		72404	E08	0.51	1 70		2			2572		0.54	1.00
12	16		72404	590	0.51	1.70		3			2572	50 2120	0.54	1.90
11	YF		72404	598	0.51	1.78		4			2572	2126	0.54	1.90
10			62011	542	0.44	4 52							0.57	4.00
10	Seg		62011	512	0.44	1.53		5			25/25	58 2126	0.54	1.90
9	Seg		62011	512	0.44	1.53		6			2572	58 2126	0.54	1.90
8	Seg		62011	512	0.44	1.53								
7	Seg		62011	512	0.44	1.53								
6	Seg		62011	512	0.44	1.53								
5	Seg		62011	512	0.44	1.53								
4	INT		69792	577	0.49	1.72								
3	INT		69792	577	0.49	1.72								
2	INT		69792	577	0.49	1.72								
1	INT		69792	577	0.49	1.72								
		Display Vat												
	DV	VE	29740	246	0.21	0.73								
			25740	240	0.21	0.75								
			26/				Eyed Eggs		Eye to Pond 98%	Kelease 94%				
			3%			YF	328,723		322,149	309,000				
			3%			Seg	1,588,830		1,557,053	1,493,500				
						INT	287,356		281,609	250,000				
						Seg	382,979		375,319	360,000				
							2,587,888		2,536,130	2,412,500				

			Flow Rate	660			
			Volume	3060		Max FI @ 53	[°] F = 1.29
			Fish Length	3.35			
			Ending Fpp	75		total CFS	20.58
			Mortality	0.0029			
		Large					
					Wt	DI	FI
1	int			139179	1856	0.18	0.84
2	int			139179	1856	0.18	0.84
3	yf			158125	2108	0.21	0.95
4	yf			158125	2108	0.21	0.95
5	SEG			192944	2573	0.25	1.16
6	SEG			192944	2573	0.25	1.16
7	SEG			192944	2573	0.25	1.16
8	SEG			192944	2573	0.25	1.16
9	SEG			192944	2573	0.25	1.16
10	SEG			192944	2573	0.25	1.16
11	SEG			192944	2573	0.25	1.16
12	SEG			192944	2573	0.25	1.16
13	SEG			186032	2480	0.24	1.12
14	SEG			186032	2480	0.24	1.12

5.1.6 June

5.1.7 July

			Vat Flow Rate	1000				
			Vat Volume	3060			Max FI @ 59	°F = 1.06
			Fish Length	3.92				
			Ending Fpp	47			total CFS	31.19
			Mortality	0.003				
		Large						
						Wt	DI	FI
1	int			138	3761	2952	0.25	0.75
2	int			138	3761	2952	0.25	0.75
3	yf			157	7650	3354	0.28	0.86
4	yf			157	7650	3354	0.28	0.86
5	SEG			192	2365	4093	0.34	1.04
6	SEG			192	2365	4093	0.34	1.04
7	SEG			192	2365	4093	0.34	1.04
8	SEG			192	2365	4093	0.34	1.04
9	SEG			192	2365	4093	0.34	1.04
10	SEG			192	2365	4093	0.34	1.04
11	SEG			192	2365	4093	0.34	1.04
12	SEG			192	2365	4093	0.34	1.04
13	SEG			185	5474	3946	0.33	1.01
14	SEG			185	5474	3946	0.33	1.01

5.1.8 August

			Vat Flow Rate	1120				
			Vat Volume	6120			Max FI @ 57	°F = 1.09
			Fish Length	4.4				
			Ending Fpp	33			total CFS	34.93
			Mortality	0.0011				
		Large						
						Wt	DI	FI
1	int			138	608	4200	0.16	0.85
2	int			138	608	4200	0.16	0.85
3	yf			157	477	4772	0.18	0.97
4	yf			157	477	4772	0.18	0.97
5	SEG			192	153	5823	0.22	1.18
6	SEG			192	153	5823	0.22	1.18
7	SEG			192	153	5823	0.22	1.18
8	SEG			192	153	5823	0.22	1.18
9	SEG			192	153	5823	0.22	1.18
10	SEG			192	153	5823	0.22	1.18
11	SEG			192	153	5823	0.22	1.18
12	SEG			192	153	5823	0.22	1.18
13	SEG			185	270	5614	0.21	1.14
14	SEG			185	270	5614	0.21	1.14

5.1.9 September

			Vat Flow Rate	1120			
			Vat Volume	6120		Max FI @ 52	°F = 1.33
			Fish Length	4.78			
			Ending Fpp	26		total CFS	34.92983
			Mortality	0.002			
		Large					
					Wt	DI	FI
1	int			138331.2288	5,320	0.18	0.99
2	int			138331.2288	5,320	0.18	0.99
3	yf			157161.8571	. 6,045	0.21	1.13
4	yf			157161.8571	. 6,045	0.21	1.13
5	SEG			191769.126	7,376	0.25	1.38
6	SEG			191769.126	7,376	0.25	1.38
7	SEG			191769.126	7,376	0.25	1.38
8	SEG			191769.126	7,376	0.25	1.38
9	SEG			191769.126	7,376	0.25	1.38
10	SEG			191769.126	7,376	0.25	1.38
11	SEG			191769.126	7,376	0.25	1.38
12	SEG			191769.126	7,376	0.25	1.38
13	SEG			184899.7013	7,112	0.24	1.33
14	SEG			184899.7013	7,112	0.24	1.33

5.1.10 October

			Vat Flow Rate	1120				
			Vat Volume	6120			Max FI @ 45	°F = 1.80
			Fish Length	4.91				
			Ending Fpp	24			total CFS	34.93
			Mortality	0.004				
 		Large						
						Wt	DI	FI
1				13	57778	5741	0.19	1.04
2				13	37778	5741	0.19	1.04
3				15	6533	6522	0.22	1.19
4				15	6533	6522	0.22	1.19
5				19	1002	7958	0.26	1.45
6				19	1002	7958	0.26	1.45
7				19	1002	7958	0.26	1.45
8				19	1002	7958	0.26	1.45
9				19	1002	7958	0.26	1.45
10				19	1002	7958	0.26	1.45
11				19	1002	7958	0.26	1.45
12				19	1002	7958	0.26	1.45
13				18	4160	7673	0.26	1.40
14				18	34160	7673	0.26	1.40

5.1.11 November

	Vat Flow Rate 1	120							
	Vat Volume 6	5120		Max FI @ 38	°F = 2.16	FI chart doesn't g	o below 40°F so FI o	f 2.16 is based on 4	0°.
	Fish Length	4.98							
	Ending Fpp	23		total CFS	34.93				
	Mortality 0.	.001							
Large									
			Wt	DI	FI				
1		137640	5984	0.20	1.07				
2		137640	5984	0.20	1.07				
3		156377	6799	0.22	1.22				
4		156377	6799	0.22	1.22				
5		190811	8296	0.27	1.49				
6		190811	8296	0.27	1.49				
7		190811	8296	0.27	1.49				
8		190811	8296	0.27	1.49				
9		190811	8296	0.27	1.49				
10		190811	8296	0.27	1.49				
11		190811	8296	0.27	1.49				
12		190811	8296	0.27	1.49				
13		183976	7999	0.26	1.43				
14		183976	7999	0.26	1.43				

5.1.12 December

	Flow Rate	1120					
	Volume	6120			Max FI @ 36	°F = 2.16	FI chart doesn't go below 40°F so FI of 2.16 is based on 40°.
	Fish Length	4.98					
	Ending Fpp	23			total CFS	34.93	
	Mortality	0.002					
La	arge						
				Wt	DI	FI	
11		137	7365	5972	0.20	1.07	
2		137	7365	5972	0.20	1.07	
3		156	5064	6785	0.22	1.22	
4		156	5064	6785	0.22	1.22	
5		190	0429	8280	0.27	1.48	
6		190	0429	8280	0.27	1.48	
7		190	0429	8280	0.27	1.48	
8		190	0429	8280	0.27	1.48	
9		190	0429	8280	0.27	1.48	
10		190	0429	8280	0.27	1.48	
11		190	0429	8280	0.27	1.48	
12		190	0429	8280	0.27	1.48	
13		183	3608	7983	0.26	1.43	
14		183	3608	7983	0.26	1.43	

5.1.13 January Year 2

		Flow Rate	1120							
		Volume	6120			Max FI @ 35	°F = 2.16	FI chart doesn't go below	v 40°F so FI of	2.16 is based on 40°.
		Fish Length	4.98							
		Ending Fpp	23			total CFS	34.93			
		Mortality	0.003							
	Large									
					Wt	DI	FI			
1			136	5953	5954	0.20	1.07			
2			136	5953	5954	0.20	1.07			
3			155	5596	6765	0.22	1.21			
4			155	5596	6765	0.22	1.21			
5			189	9858	8255	0.27	1.48			
6			189	9858	8255	0.27	1.48			
7			189	9858	8255	0.27	1.48			
8			189	9858	8255	0.27	1.48			
9			189	9858	8255	0.27	1.48			
10			189	9858	8255	0.27	1.48			
11			189	9858	8255	0.27	1.48			
12			189	9858	8255	0.27	1.48			
13			183	3057	7959	0.26	1.43			
14			183	3057	7959	0.26	1.43			

5.1.14 February Year 2

		Flow Rate	1120							
		Volume	6120			Max FI @ 36	°F = 2.16	FI chart doesn't go below 40°F so FI of 2.16 is based on	art doesn't go below 40°F so FI of 2.16 is b	ased on 40°.
		Fish Length	4.98							
		Ending Fpp	23			total CFS	34.93			
		Mortality	0.004							
	La	irge								
					Wt	DI	FI			
1			136	405	5931	0.19	1.06			
2			136	405	5931	0.19	1.06			
3			154	973	6738	0.22	1.21			
4			154	973	6738	0.22	1.21			
5			189	099	8222	0.27	1.47			
6			189	099	8222	0.27	1.47			
7			189	099	8222	0.27	1.47			
8			189	099	8222	0.27	1.47			
9			189	099	8222	0.27	1.47			
10			189	099	8222	0.27	1.47			
11			189	099	8222	0.27	1.47			
12			189	099	8222	0.27	1.47			
13			182	325	7927	0.26	1.42			
14			182	325	7927	0.26	1.42			

5.1.15 March Year 2

		Vat Flow Rate	1120								
		Vat Volume	6120			Max FI @ 39	°F = 2.16	FI chart doesn't	go below 4	0°F so FI of	2.16 is based on 40°.
		Fish Length	5.17								
		Ending Fpp	20.5			total CFS	34.93				
		Mortality	0.003								
	Large										
					Wt	DI	FI				
1			13	5996	6634	0.21	1.15				
2			13	5996	6634	0.21	1.15				
3			15	4508	7537	0.24	1.30				
4			15	4508	7537	0.24	1.30				
5			18	8531	9197	0.29	1.59				
6			18	8531	9197	0.29	1.59				
7			18	8531	9197	0.29	1.59				
8			18	8531	9197	0.29	1.59				
9			18	8531	9197	0.29	1.59				
10			18	188531		0.29	1.59				
11			18	8531	9197	0.29	1.59				
12			18	8531	9197	0.29	1.59				
13			18	1778	8867	0.28	1.53				
14			18	1778	8867	0.28	1.53				

5.1.16 April Year 2

		Flow Rate	1120				
		Volume	6120			Max FI @ 43	°F = 1.94
		Fish Length	5.4				
		Ending Fpp	18			total CFS	34.93
		Mortality	0.002				
	Large						
					Wt	DI	FI
1			13	35724	7540	0.23	1.25
2			13	35724	7540	0.23	1.25
3			15	54199	8567	0.26	1.42
4			154199		8567	0.26	1.42
5			18	38154	10453	0.32	1.73
6			18	38154	10453	0.32	1.73
7			18	38154	10453	0.32	1.73
8			18	38154	10453	0.32	1.73
					-		
9			18	38154	10453	0.32	1.73
10			18	38154	10453	0.32	1.73
11			18	38154	10453	0.32	1.73
12			18	38154	10453	0.32	1.73
13			18	31414	10079	0.30	1.67
14			18	31414	10079	0.30	1.67

6 Appendix B. Water Quality Parameters

Water Quality Data - Source	e IDFG, 2021
-----------------------------	--------------

Primary IOC Contaminants	Sawtooth		
Arsenic	0.0025		
Barium	<0.05		
Cadmium	<0.0005		
Chromium	<0.0002		
Mercury	<0.0002		
Nickel	<0.02		
Selenium	<0.0005		
Sodium	6.55		
Flouride	1.010		
Secondary and Other IOC Contaminants			
Chloride	ND		
Iron	<0.05		
Manganese	<0.005		
Dissolved Solids	ND		
Zinc	<0.01		
Silver	<0.001		
Sulfate	6.0		
Calcium	28.2		
Hardness (as CaCO ₃)	79		
Magnesium	2.0		
рН	7.5		
Potassium	0.500		
Lead	<0.005		
Copper	<0.01		
Alkalinity (mg/l)	81.7		
Ammonia (mg/l)	ND		
Gasoline (mg/l)	ND		
Lube Oil (mg/l)	ND		
Diesel (mg/l)	ND		
Nitrate/N	<0.02		
Nitrite/N	<0.01		
Flow (cfs)	13-34		
Temperature (°F)	32-72		

7 Appendix C. General Marking Schedule

- February 10th Pit tagging Spring-Run Chinook at Clearwater
- April 26th-May 24th Marking Spring-Run Chinook and Summer-Run Chinook at Clearwater
- May 11th-13th Marking Summer-Run Chinook at Pahsimeroi
- May 29th- June 3rd Marking Spring-Run Chinook at Sawtooth
- June 7th-22nd Marking Spring-Run Chinook at Rapid River
- June 14th-17th Marking Summer-Run Chinook at McCall
- June 26th-June 30th Marking Summer-Run Sockeye at Springfield
- July 12th- 20th Marking Summer-Run Chinook at McCall
- July 26th-August 5th Marking Summer-Run Steelhead at Clearwater
- July 28th- August 4th Marking Summer-Run Steelhead at Magic Valley
- August 12th-17th Marking Summer-Run Steelhead at Niagara Springs
- August 25th August 30th Marking Summer-Run Steelhead at Hagerman National
- September 20th-September 23rd Pit tagging Spring-Run Chinook, Summer-Run Chinook, and Summer-Run Steelhead at Clearwater
- September 27th-September 30th Pit tagging Spring-Run Chinook at Rapid River
- October 5th and 6th Pit tagging Spring-Run Chinook at Sawtooth
- October 11th- 14th Pit tagging Summer-Run Chinook at McCall
- October 19th-21st Pit tagging Summer-Run Sockeye at Springfield
- October 28th and 29th Pit tagging Summer-Run Steelhead at Magic Valley
- October 30th-October 31st Pit tagging Summer-Run Steelhead at Niagara Springs
- November 9th and 10th Pit tagging Summer-Run Steelhead at Pahsimeroi
- November 16th and 17th Pit tagging Summer-Run Chinook at Hagerman National
- November 29th-December 2nd Pit tagging Spring-Run Chinook at Clearwater

8 Appendix D. Options Discussed

8.1.1 Reduce Fish Size to 20 fish per pound and total Hatchery to 2.8M

Spring/Summer Chinook are released at a large range of sizes within the LSRCP program. Smolts are commonly measured in fish per pound (fpp) at release and a condition factor is used to convert from fpp to fork length (in or mm). Average size at release varies from 12 fpp (Tucannon) to 25 fpp (Lookingglass) in LSRCP. Top adult return rates have ranged from 20 fpp (McCall FH) to 25 fpp (Lookingglass). Limited head to head release comparisons exist, but larger smolts have not necessarily returned more adults.

Shifting Sawtooth to 20 fpp smolts would increase the final rearing capacity from 2.52M to 2.8M smolts (200K per raceway), while maintaining a 0.30 Density Index. At an average 10-year SAR of 0.21, would provide an additional 424 adults above broodstock replacement (160 adults).

Early rearing space could be provided by starting two small raceways at 415,000 each and then splitting off 300,000 to a large raceway after Sockeye acclimation.

Overall feed costs remain the same, but marking/tagging/fish health, etc. is still estimated at \$0.09/smolt.

Cost for implementation is \$27,000.

This option was not pursued because additional research is needed to identify survival differences between 18 to 20 fpp Chinook smolts.

8.1.2 Construct New Rearing Ponds

To expand Sawtooth capacity further and maximize smolt quality, construction of lined rearing ponds would be necessary. These ponds could be built in the existing "trout pond" footprint and utilize re-use water from the existing raceways. The project would mirror lined ponds at Lyons Ferry Fish Hatchery with collection basins and filtration to ensure efficient smolt collection.

With the current configurations, one rearing raceway (200,000 at 20 fpp) would have to be sacrificed for the "early rearing" bottleneck for the new "lakes". Steelhead reared in Lyons Ferry lakes have a 2-fold survival to adult advantage based on "Reciprocal Study" (pers com Joe Bumgarner, WDFW) findings. If a similar advantage was realized in spring Chinook, the rearing lake addition would provide as many adults as the current 2M smolt program.

Each rearing lake would have the capacity to rear approximately 500,000 smolts to 20 fpp.

This option was not pursued because of winter freezing conditions onsite in existing raceways. Rearing lakes trying to use re-use water from the raceways would be prone to extreme ice up issues.

Cost for Implementation is \$4M based on Lyons Ferry cost estimates.

8.1.3 Retrofit One Off-line Settling Basin for Acclimation

The Sockeye program has utilized Sawtooth Fish Hatchery as an acclimation site for young sockeye smolts from Springfield Fish Hatchery. Acclimation assists in homing, but as importantly provides a transition area for the smolts converting from 236 ppm CaCO3 to 79 ppm CaCO3 at Sawtooth Fish Hatchery. Currently, acclimation occurs after spring Chinook releases.

A new acclimation pond would provided Sockeye rearing, but could also provide acclimation (December to April) for a portion of steelhead reared from Hagerman National Fish Hatchery or Magic Valley Fish Hatchery (see Hagerman Infrastructure Audit).

The most cost-effective acclimation pond would by to retrofit one of the existing Off-line Settling ponds. One pond should be effective for collecting cleaning waste and can be "harvested" while solids are diverted to the Full-Flow settling pond.

Pond would need a liner and collection basin and would utilize re-used water from existing raceway production.

Anticipated cost of \$1M for construction.

This option was not pursued because of winter freezing conditions onsite.

